Edit MetaData
Let f be a non-negative function defined on the interval $$[0,1]$$. If$$\int_{0}^{x}\sqrt{1 - (f'(t))^2} dt = \int_{0}^{x} f(t)dt, 0 \leq x \leq 1$$, and f(0) = 0, then
$$f\left(\frac{1}{2}\right) < \frac{1}{2}$$ and $$f\left(\frac{1}{3}\right) > \frac{1}{3}$$
$$f\left(\frac{1}{2}\right) > \frac{1}{2}$$ and $$f\left(\frac{1}{3}\right) > \frac{1}{3}$$
$$f\left(\frac{1}{2}\right) < \frac{1}{2}$$ and $$f\left(\frac{1}{3}\right) < \frac{1}{3}$$
$$f\left(\frac{1}{2}\right) > \frac{1}{2}$$ and $$f\left(\frac{1}{3}\right) < \frac{1}{3}$$
Create a FREE account and get:
Login to your Cracku account.
Enter Valid Email
Follow us on
Incase of any issue contact support@cracku.in
Boost your Prep!
Day-wise Structured & Planned Preparation Guide
By proceeding you agree to create your account
Free CAT Schedule PDF will be sent to your email address soon !!!
Join cracku.in for Expert Guidance.