Question 23

A tent is in the form a cylinder and is surmounted by a cone; radius and height of the cylindrical portion are 10 m and 25 m respectively. For the conical part, radius is 10 m and slant height is 15 m. Calculate the amount of canvas required to build the tent allowing 20% extra for folding, stitching etc.

Solution

Height of Cylinder = 25 m

Radius of Cylinder = 10 m

So, Lateral surface area of cylinder = 2$$\pi rh$$

                                                      $$=2\times\frac{22}{7}\times10\times25$$

                                                        $$ = 1571.42857m^2$$                                                      

Slant height of cone(l) = 15 m

Radius of cone = 10 m

So, Lateral surface area of cone = $$\pi rl$$

$$\frac{22}{7} \times 10 \times 15$$
= $$ 471.428571 m^2$$

Canvas required to build the tent = $$1571.42857+471.428=2042.85657m^2$$

 Tent is allowed 20% extra for folding, stitching

So, total canvas is  (100 +20 )%

=$$1.2\times2042.85657$$

=$$2451.42m^2$$    


Create a FREE account and get:

  • Download RRB Study Material PDF
  • 45+ RRB previous papers with solutions PDF
  • 300+ Online RRB Tests for Free

cracku

Boost your Prep!

Download App