In each of these questions, one question is given followed by data in three statements I, II and III. You have to study the question and the data in statements and decide the question can be answered with data in which of the Statements and mark your answer accordingly.
What is the speed of the train is kmph?
Statement: I. The train crosses an ‘x’ metre long platform in ‘n’ seconds.
II. Length of the train is ‘y’ metres.
III. The train crosses a single pole in ‘m’ seconds.
Clearly, each statement alone is insufficient.
Let speed of the train = s kmph
I & II : Length of train = y, length of platform = x, time taken = n
=> $$\frac{x + y}{s}$$ = n
=> s = $$\frac{n}{x + y}$$ [ where, x,y,n are constants.]
Thus, I & II are sufficient.
II & III : Length of train = y, time taken = m
=> s = y/m
Thus, II & III are sufficient.
I & III : Let length of train = L
=> $$\frac{L}{s}$$ = m [From III]
& $$\frac{x + L}{s}$$ = n [From I]
Since, we have two variables 'L' & 's' and two equations. Therefore, we can find the speed of train.
Thus, I & III are sufficient.
Thus, any two of the three statements are sufficient.
Create a FREE account and get: