If ABCD is a cyclic quadrilateral in which $$\angle$$ABC = $$47^\circ$$ and $$\angle$$BCD = $$97^\circ$$ then $$\angle$$ADC - $$\angle$$BAD =
Sum of the opposite angles of cyclic quadrilateral is 180 degrees
$$\angle$$ABC + $$\angle$$ADC = $$180^\circ$$
$$\Rightarrow$$ $$47^\circ$$ + $$\angle$$ADC = $$180^\circ$$
$$\Rightarrow$$ $$\angle$$ADC = $$133^\circ$$
$$\angle$$BCD + $$\angle$$BAD = $$180^\circ$$
$$\Rightarrow$$ $$97^\circ$$ + $$\angle$$BAD = $$180^\circ$$
$$\Rightarrow$$ $$\angle$$BAD = $$83^\circ$$
$$\therefore\ $$ $$\angle$$ADC - $$\angle$$BAD = $$133^\circ$$ - $$83^\circ$$ = $$50^\circ$$
Hence, the correct answer is Option B
Create a FREE account and get: