In each of the questions, a question is followed by two statements I and II. Give your answer
What is the value of $$\cos \theta$$?
I. $$\sec \theta + \tan \theta$$ = 5
II. $$1 + \sin \theta = \frac{25}{13}$$
I.
we know that $$\sec^2\theta\ -\tan^2\theta\ =1.$$
or,$$\left(\sec\theta\ -\tan\theta\ \right)\left(\sec\theta\ +\tan\theta\ \right)=1.$$
here,$$\sec\theta\ +\tan\theta\ =5.$$
So,$$\sec\theta\ -\tan\theta\ =1\div5=0.2.$$
So, $$2\sec\theta\ =5+0.2=5.2.$$
or,$$\sec\theta\ =2.6.$$
or,$$\cos\theta\ =\frac{\ 10}{26}=\frac{\ 5}{13}.$$
II.
we know that $$\sin^2\theta\ +\cos^2\theta\ =1.$$
or,$$\cos\theta\ =\pm\ \sqrt{1-\sin^2\theta\ \ }.$$
here,$$\sin\theta\ =\ \frac{\ 12}{13}.$$
So,$$\cos\theta\ =\pm\ \sqrt{1-\ \frac{\ 144}{169}\ }=\pm\ \sqrt{\ \frac{\ 25}{169}\ }=\ \pm\ \frac{\ 5}{13}.$$
So, Option A is correct choice.
Create a FREE account and get: