Edit MetaData
Let $$x_{1}, x_{2} ... x_{n}$$ be a set of observations and $$f_{1}, f_{2} ... f_{n}$$ be their frequencies. If $$y_{i} = 3x_{i} + K$$ then $$\frac{\sum (y_{i} - \overline{y})^{2}f_{i}}{\sum f_{i}}$$
$$\frac{3\sum f_{i}(x_{i} - \overline{x})^{2}}{\sum f_{i}}$$
$$\frac{9\sum f_{i}(x_{i} - \overline{x})}{\sum f_{i}}$$
$$\frac{9\sum f_{i}(x_{i} - \overline{x})^{2}}{\sum f_{i}}$$
$$\frac{3\sum f_{i}(x_{i})^{2}}{\sum f_{i}}$$
Create a FREE account and get:
Login to your Cracku account.
Enter Valid Email
Follow us on
Incase of any issue contact support@cracku.in
Boost your Prep!
Day-wise Structured & Planned Preparation Guide
By proceeding you agree to create your account
Free CAT Schedule PDF will be sent to your email address soon !!!
Join cracku.in for Expert Guidance.