$$\frac{2}{5}$$ of a set of notebooks are sold on the first day. $$\frac{3}{4}$$ of the remaining got sold on the second day. If 75 notebooks remain still, how many notebooks were kept for sale?
let no of books be X
$$\frac{2}{5}th$$ were soldÂ
 $$X\times\frac{2}{5}th = \frac{2X}{5}$$
ie $$\frac{2X}{5}$$ books were sold from X
remaining$$ X -Â \frac{2X}{5}Â =Â \frac{3X}{5}$$
from $$\frac{3X}{5}$$ books $$\frac{3}{4}$$Â were sold
$$\frac{3X}{5}\times \frac{3}{4}Â =Â \frac{9X}{20}$$
$$\frac{9X}{20}$$Â books were sold from $$\frac{3X}{5}$$
remaining$$\frac{3X}{5}Â -\frac{9X}{20}Â =Â \frac{3X}{20}$$ books
given $$\frac{3X}{20}$$Â is equal to 75 books
$$\frac{3X}{20}= 75$$
X= 500
Create a FREE account and get: