If each interior angle of a regular polygon is $$135^\circ$$, then the number of sides of the polygon is
Each interior angle of the regular polygon = $$\frac{\left(n-2\right)180^{\circ\ }}{n}$$
Given, each interior angle of the regular polygon is $$135^\circ$$
$$\Rightarrow$$ $$\frac{\left(n-2\right)180^{\circ\ }}{n}=135^{\circ\ }$$
$$\Rightarrow$$ $$4\left(n-2\right)\ =3n$$
$$\Rightarrow$$ $$\ 4n-8=3n$$
$$\Rightarrow$$ $$n=8$$
$$\therefore\ $$Number of sides of the polygon = 8
Create a FREE account and get: