Question 136

If each interior angle of a regular polygon is $$135^\circ$$, then the number of sides of the polygon is

Solution

Each interior angle of the regular polygon = $$\frac{\left(n-2\right)180^{\circ\ }}{n}$$

Given, each interior angle of the regular polygon is $$135^\circ$$

$$\Rightarrow$$  $$\frac{\left(n-2\right)180^{\circ\ }}{n}=135^{\circ\ }$$

$$\Rightarrow$$  $$4\left(n-2\right)\ =3n$$

$$\Rightarrow$$  $$\ 4n-8=3n$$

$$\Rightarrow$$  $$n=8$$

$$\therefore\ $$Number of sides of the polygon = 8


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App