Instructions

In the following questions three equations numbered I, II and III are given.
You have to solve all the equations either together or separately, or two together and one
separately, or by any other method and Give answer
a: x< y=z
b: x ≤ y < z
c: x < y > z
d: x = y > z
e: x = y = z or if none of the above relationship is established

Question 118

I. $$x=\sqrt{[(36)^{\frac{1}{2}}\times(1296)^{\frac{1}{4}}}]$$
II. $$2y + 3z = 33$$
III. $$6y + 5z = 71$$

Solution

From I : $$x=\sqrt{[(36)^{\frac{1}{2}}\times(1296)^{\frac{1}{4}}}]$$

=> $$x = \sqrt{6 \times 6} = \pm 6$$

Applying the operation : Eqn(II) $$\times 3$$ - Eqn(III)

=> $$(6y - 6y) + (9z - 5z) = (99 - 71)$$

=> $$4z = 28$$

=> $$z = \frac{28}{4} = 7$$

Putting it in Eqn(II), we get :

=> $$2y + 21 = 33$$

=> $$2y = 33 - 21 = 12$$

=> $$y = \frac{12}{2} = 6$$

$$\therefore x \leq y < z$$


Create a FREE account and get:

  • Banking Quant Shortcuts PDF
  • Free Banking Study Material - (15000 Questions)
  • 135+ Banking previous papers with solutions PDF
  • 100+ Online Tests for Free

cracku

Boost your Prep!

Download App