Question 112

For any two statements p, q the statement $$\left(p \Rightarrow q \right) \vee \left(\sim \left(\left(\sim p\right) \Leftrightarrow q \right)\right)$$ is false only when

Solution
p$$\rightsquigarrow$$q$$\rightsquigarrow$$p$$\Rightarrow$$qp⇒∼p(p$$\rightsquigarrow$$q
TFTFF
FTFTF

From the above table, the truth value of the expression (∼pp)∧(p⇒∼p) is always F. Hence it's a contradiction. so the p is always true and q is false  Answer


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App