If $$\tan\theta=\frac{7}{24}$$ then find the value of $$p$$ such that $$\frac{\tan\theta-\sec\theta}{\sin\theta}=\frac{-p}{28}$$
$$\frac{7}{25}-\frac{\frac{25}{24}}{\frac{7}{25}}=-\frac{p}{28}$$Given $$\tan\theta=\frac{7}{24}$$
we know that $$\tan\theta=\frac{perpendicular}{base}$$
applying pythagoras theormÂ
$$hypotenuse^2=Base^2+perpendicular^2$$
putting values,we get
hypotenuse =$$7^2+24^2$$=25
so, $$\sin\theta=\frac{7}{25}$$  $$\cos\theta=\frac{24}{25}$$  $$\sec\theta=\frac{25}{24}$$
putting the value into equation Â
$$\frac{\left[\frac{7}{25}-\frac{25}{24}\right]}{\frac{7}{25}}=-\frac{p}{28}$$
we get   $$-\frac{18}{24}\times\frac{25}{7}=-\frac{p}{28}$$
=75 Ans
Create a FREE account and get: