Question 11

If $$\tan\theta=\frac{7}{24}$$ then find the value of $$p$$ such that $$\frac{\tan\theta-\sec\theta}{\sin\theta}=\frac{-p}{28}$$

Solution

$$\frac{7}{25}-\frac{\frac{25}{24}}{\frac{7}{25}}=-\frac{p}{28}$$Given $$\tan\theta=\frac{7}{24}$$

we  know that $$\tan\theta=\frac{perpendicular}{base}$$

applying pythagoras theorm 

$$hypotenuse^2=Base^2+perpendicular^2$$

putting values,we get

hypotenuse =$$7^2+24^2$$=25

so, $$\sin\theta=\frac{7}{25}$$  $$\cos\theta=\frac{24}{25}$$  $$\sec\theta=\frac{25}{24}$$

putting the value into equation  

$$\frac{\left[\frac{7}{25}-\frac{25}{24}\right]}{\frac{7}{25}}=-\frac{p}{28}$$

we get     $$-\frac{18}{24}\times\frac{25}{7}=-\frac{p}{28}$$

=75 Ans


Create a FREE account and get:

  • Download RRB Study Material PDF
  • 45+ RRB previous papers with solutions PDF
  • 300+ Online RRB Tests for Free

cracku

Boost your Prep!

Download App