The area of a trapeziumis $$\frac{1}{2}(a^2 - b^2)$$ sq. units. where a and b are lengths of the parallel sides. Then, the distance between its parallel sides is
As per the question,
The area of theĀ trapezium is $$\frac{1}{2}(a^2 - b^2)$$ sq. units.
We know that, the area of theĀ trapezium$$=\dfrac{(a+b)(d)}{2}$$
Hence,
$$\Rightarrow \dfrac{(a+b)(d)}{2}=\frac{1}{2}(a^2 - b^2)$$
$$\Rightarrow d=\dfrac{2(a^2-b^2)}{2(a+b)}$$
$$\Rightarrow d=\dfrac{(a+b)(a-b)}{(a+b)}=(a-b)$$
Hence the distance between the parallel sides $$d=(a-b)$$
Create a FREE account and get: