For the following questions answer them individually
AD is the median of a triangle ABC and O is the centroid such that AO = 10 cm. The length of OD in cm is
The external bisector of $$\angle B$$ and $$\angle C$$ of $$\triangle ABC$$ (where AB & AC extended to E and F respectively) meet at point P. If $$\angle BAC=100^\circ$$ , then the measure of $$\angle BPC$$
If $$tan(2 \theta + 45^\circ)$$ = $$cot 3 \theta$$ where $$(2\theta + 45^\circ)$$ and $$3 \theta$$ are acute angles, then the value of $$\theta$$ is
One flies a kite with a thread 150 metres long. If the thread of the kite makes an angle of 60° with the horizontal line, then the height of the kite from the ground (assuming the thread to be in a straight line) is
If $$\theta$$ be acute angle and $$cos \theta$$=$$\frac{15}{17}$$,then the value of $$cot (90^\circ-\theta)$$ is
If $$sec^{2} \theta+tan^{2} \theta$$= $$\frac{7}{12}$$ then $$sec^{4} \theta-tan^{4} \theta$$=
The following Pie-chart shows the land distribution of a housing complex. If the total area of the complex is 5 acres, examine the pie chart and answer the
figure