For the following questions answer them individually
Suresh purchased a computertable for ₹9,000 and a centre table for ₹4,000. He sold the computertable with 8% profit. With what profit percentage should he sell the centre table so as to gain 10% on the whole transaction?
Study the given bar graph and answer the question that follows.
The bar graph indicates the production of sugar (in lakh tonnes) by three different sugar companies P, Q and R over the years 2015 to 2019.
The percentage rise in the production of sugar by company Q as compared to the previous year is the maximum in the year:
The simple interest on a certain sum of money for 5 years at the rate of 10% per annum is half the compound interest on ₹5,000 for 2 years at the rate of 10% per annum,interest compounded yearly. The sum placed on simple interest is:
If the number 645A2879B8 is divisible by both 8 and 9, then the smallest possible values of A and B will be:
The number of students enrolled in different streams at Senior Secondary level in five schools is shown in the bar graph.
In which school is the number of students the least?
If $$(40\sqrt{5}x^3 - 2\sqrt{2}y^3) \div (2\sqrt{5}x - \sqrt{2}y) = Ax^2 + By^2 - Cxy$$, then find the value of $$A + 3B - \sqrt{10}C$$.
A shopkeeper offers successive discounts of 35%, 10% and 6%on every item. At whatprice (nearest to a rupee) customers can get an item marked for ₹1,000?
If $$x^4 + \frac{1}{x^4} = 1154, x > 0$$, then what will be the value of $$x + \frac{1}{x}?$$
If $$\frac{\cosec^2 \theta}{\cosec^2 \theta - \cot^2 \theta} = \frac{13}{4}, 0^\circ < \theta < 90^\circ$$, then the value of $$\frac{52 \cos^2 \theta - 9 \tan^2 \theta}{18 \sec^2 \theta + 8 \cot^2 \theta}$$ will be:
Number of students enrolled in different branches of higher secondary of five schools.
Number of students enrolled in science branch of school A is what percentage of total number of students of all the five school from all branches?