For the following questions answer them individually
If N = 1 + 11 + 111 + 1111 + … +111111111, then what is the sum of the digit's of N?
What is the sum of first 40 terms of 1 + 3 + 4 + 5 + 7 + 7 + 10 + 9 + ….?
What is the value of $$\frac{1}{0.2} + \frac{1}{0.02} + \frac{1}{0.002} +....$$ upto 9 terms?
What is the value of $$\frac{3.6 \times 1.62 + 0.48 \times 3.6 }{1.8 \times 0.8 + 10.8 \times 0.3 - 2.16}$$?
If $$\frac{1}{1 + \frac{1}{1 + \frac{1}{1+ \frac{1}{x}}}} = \frac{5}{8}$$, then what is the value of x?
If $$\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{4}\right)\left(1 + \frac{1}{6}\right)\left(1 + \frac{1}{8}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right) = 1 + \frac{1}{x}$$, then what is the value of x?
What is the value of $$\frac{1}{3 \times 7} + \frac{1}{7 \times 11} + \frac{1}{11 \times 15} +.....+\frac{1}{899 \times 903}?$$
What is the unit digit of $$1^5 + 2^5 + 3^5 + … + 20^5?$$
$$x, y$$ and $$z$$ are prime numbers and $$x + y + z = 38$$. What is the maximum value of $$x$$?
N is the smallest three digit prime number. When N is divided by 13, then what will be the remainder?