For the following questions answer them individually
$$\sqrt{6+\sqrt{6+\sqrt{6 + ...}}} = ?$$
The square root of $$(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}})$$
The remainder when 3^{21} is divided by 5 is
The value of $$\frac{2\frac{1}{3} - 1\frac{2}{11}}{3 + \frac{1}{3 + \frac{1}{3+ \frac{1}{3}}}}$$ is
The last digit of $$(1001)^{2008}$$ + 1002 is
The value of $$\frac{3\sqrt{2}}{\sqrt{3} + \sqrt{6}} - \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}} + \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}} $$ is
If x * y = $$(x + 3)^2 (y -1)$$, then the value of 5 * 4 is
$$\frac{(0.05)^2 + (0.41)^2 + (0.073)^2}{(0.005)^2 + (0.041)^2 + (0.0073)^2}$$ is
If 9√x = √12 + √147 , then x = ?
$$\sqrt[3]{1-\frac{127}{343}}$$ is equal to