Sign in
Please select an account to continue using cracku.in
↓ →
Which of the following statements is/are correct?
A. If $$2^{x}=3^{y}=6^{-z}, then \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$$
B. $$(243)^{0.16}\times(9)^{0.1}=0.3$$
C. If $$3.105 \times10^{p}=0.00239 + 0.000715$$, then P = -3
Let's analyse the statements:
Statement A:
Let, $$2^{x}=3^{y}=6^{-z}=k$$
Now, $$2^x=k$$
or, $$x=\dfrac{\log\ k}{\log\ 2}$$
or, $$\dfrac{1}{x}=\dfrac{\log\ 2}{\log\ k}$$
Also, $$3^y=k$$
or, $$y=\dfrac{\log\ k}{\log\ 3}$$
or, $$\dfrac{1}{y}=\dfrac{\log\ 3}{\log\ k}$$
Also,$$6^-z=k$$
or, $$z=-\dfrac{\log\ k}{\log\ 6}$$
or, $$\dfrac{1}{z}=-\dfrac{\log\ k}{\log\ 6}$$
So, $$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{\log2}{\log k}+\dfrac{\log3}{\log k}-\dfrac{\log6}{\log k}=\dfrac{\log2+\log3-\log6}{\log\ k}=\dfrac{\log\left(2\times\ 3\right)-\log6}{k}=\dfrac{\log6-\log6}{k}=0$$
So, statement A is true
Statement B:
$$(243)^{0.16}\times(9)^{0.1}$$
=$$\left(3^5\right)^{0.16}\times\ \left(3^2\right)^{0.1}=3^{0.8}\times\ 3^{0.2}=3^{0.8+0.2}=3^1=3$$
But according to statement B the value must come 0.3
So, statement B is false.
Statement C:
$$3.105 \times10^{p}=0.00239 + 0.000715$$
or, $$3.105 \times10^{p}=0.003105$$
or, $$10^p=\dfrac{0.003105}{3.105}$$
or, $$10^p=\dfrac{1}{1000}=10^{-3}$$
So, p=-3
So, statement C is true.
So, option D is the correct