Sign in
Please select an account to continue using cracku.in
↓ →
If $$\log 2, \log(2^{x}-1)$$ and $$\log(2^{x}+3)$$ are in A.P, then x is equal to ______________
If $$\log 2, \log(2^{x}-1)$$ and $$\log(2^{x}+3)$$ are in A.P
We know when A, B and C are in AP.
2B = A+C
Thus, $$2\log(2^x-1)\ =\log2+\log\left(2^x+3\right)$$
Assuming $$2^x=p$$
$$2\log(p-1)\ =\log2+\log\left(p+3\right)$$
Now, applying the properties of logarithms
$$\log_{a}{xy} = \log_{a}{x}+\log_{a}{y}$$
$$(p-1)^2\ =2\left(p+3\right)$$
$$\ p^2-2p+1=2p+6$$
$$\ p^2-4p-5=0$$
$$\left(p-5\right)\left(p+1\right)=0$$
Thus, p = 5 or -1
$$2^x$$ = 5 as it cannot be negative.
Thus, x = $$\log_25$$
Create a FREE account and get: