Sign in
Please select an account to continue using cracku.in
↓ →
If $$a+b=2c$$, then the value of $$\frac{a}{a-c}+\frac{b}{b-c}$$ is
Since, $$a+b=2c$$
or, $$b-c=c-a$$
So, $$\dfrac{a}{a-c}+\dfrac{b}{b-c}$$
=$$\dfrac{a}{a-c}+\dfrac{b}{c-a}$$
=$$\dfrac{a}{a-c}-\dfrac{b}{a-c}$$
=$$\dfrac{a-b}{a-c}$$
Substituting $$a+b=2c$$,
=$$\dfrac{a-b}{a-\dfrac{\left(a+b\right)}{2}}$$
=$$\dfrac{a-b}{\dfrac{2a-a-b}{2}}$$
=$$\dfrac{a-b}{\dfrac{a-b}{2}}$$
=$$\dfrac{2\left(a-b\right)}{\left(a-b\right)}$$
=$$2$$