Sign in
Please select an account to continue using cracku.in
↓ →
The integral $$\int \frac{\sec^2 x}{(\sec x + \tan x)^{\frac{9}{2}}} dx$$ equals (for some arbitrary constant K)
$$-\frac{1}{(\sec x + \tan x)^{\frac{11}{2}}}\left\{\frac{1}{11} - \frac{1}{7}(\sec x + \tan x)^2\right\} + K$$
$$\frac{1}{(\sec x + \tan x)^{\frac{11}{2}}}\left\{\frac{1}{11} - \frac{1}{7}(\sec x + \tan x)^2\right\} + K$$
$$-\frac{1}{(\sec x + \tan x)^{\frac{11}{2}}}\left\{\frac{1}{11} + \frac{1}{7}(\sec x + \tan x)^2\right\} + K$$
$$\frac{1}{(\sec x + \tan x)^{\frac{11}{2}}}\left\{\frac{1}{11} + \frac{1}{7}(\sec x + \tan x)^2\right\} + K$$
Create a FREE account and get:
Terms of Service
Detailed syllabus & Topic-wise Weightage
By proceeding you agree to create your account
Free CAT Syllabus PDF will be sent to your email address soon !!!