Sign in
Please select an account to continue using cracku.in
↓ →
If $$\dfrac{sin \theta+cos\theta}{sin \theta-cos\theta}=3$$, then value of $$sin^{4}\theta-cos^{4}\theta$$ is
Given in the question that,
$$\dfrac{sin \theta+cos\theta}{sin \theta-cos\theta}=3$$
Upon cross multiplication, we get
$$\sin\theta\ +\ \cos\theta\ \ =\ 3\sin\theta\ \ -\ 3\cos\theta\ $$
$$4\cos\theta\ \ =\ 2\sin\theta\ $$
$$2\cos\theta\ \ =\ \sin\theta\ $$ ---(1)
We know that $$\sin^2\theta\ +\ \cos^2\theta\ \ =\ 1\ $$
Substituting the value of $$\sin\theta\ $$ from (1), we get,
$$4\cos^2\theta\ \ +\ \cos^2\theta\ \ =\ 1$$
$$\cos^2\theta\ \ =\ \dfrac{1}{5}$$
We get,
$$\sin^2\theta\ \ =\ 1\ -\ \dfrac{1}{5}\ =\ \dfrac{4}{5}$$
The value needed to be calculated is,
$$\sin^4\theta-\cos^4\theta\ =\ \left(\sin^2\theta\ \right)^2-\ \left(\cos^2\theta\ \right)^2\ =\ \left(\dfrac{4}{5}\right)^2\ -\ \left(\dfrac{1}{5}\right)^2\ =\ \dfrac{16}{25}\ -\ \dfrac{1}{25}\ =\ \dfrac{15}{25}\ =\ \dfrac{3}{5}$$
Hence, the correct answer is option C.