Question 30

The minimum value of $$(2\sin^{2}\theta+3\cos^{2}\theta)$$ is

$$(2\sin^{2}\theta+3\cos^{2}\theta)$$
= $$2\left[\sin^2\left(\theta\ \right)+\cos^2\left(\theta\ \right)\right]+\cos^2\left(\theta\ \right)$$
= $$2+\cos^2\theta\ $$

The min value occurs at $$\cos\theta\ =0$$ .
Therefore, the minimum value = 2 .

MAT Quant Questions | MAT Quantitative Ability

MAT DILR Questions | LRDI Questions For MAT

MAT Verbal Ability Questions | VARC Questions For MAT