Sign in
Please select an account to continue using cracku.in
↓ →
The points (2,2), (6,3) and (4,11) are vertices of :
Distance between (2,2) and (6,3) $$=\sqrt{\left(6-2\right)^2+\left(3-2\right)^2}=\sqrt{16+1}=\sqrt{17}$$
Distance between (4,11) and (6,3) $$=\sqrt{\left(6-4\right)^2+\left(3-11\right)^2}=\sqrt{16+1}=2\sqrt{17}$$
Distance between (2,2) and (4,11) $$=\sqrt{\left(4-2\right)^2+\left(11-2\right)^2}=\sqrt{16+1}=\sqrt{85}$$
Thus, the three sides of the triangle are $$\sqrt{17}$$, $$2\sqrt{17}$$, and $$\sqrt{85}$$. This is a right angled triangle as -
$$\left(\sqrt{17}\right)^2+\left(2\sqrt{17}\right)^2=\left(\sqrt{85}\right)^2$$