Sign in
Please select an account to continue using cracku.in
↓ →
If $$\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=k$$ then value of $$k$$ is.
$$b+c=\dfrac{a}{k}\rightarrow1$$
$$c+a=\dfrac{b}{k}\rightarrow2$$
$$a+b=\dfrac{c}{k}\rightarrow3$$
Adding eq. 1, eq. 2 and eq. 3
$$2(a+b+c)=\dfrac{a+b+c}{k}$$
$$k=\dfrac{1}{2}$$
Subtracing eq. 2 from eq. 1
$$a-b=\dfrac{b-a}{k}$$
$$k=-1$$
Thus, k can be either $$k=\dfrac{1}{2}$$ or $$k=-1$$