Question 29

Given below are two statements:
Statement (I): $$(x^{2}+3x+1)=(x-2)^{2}$$ is not a quadratic equation.
Statement (II): The nature of roots of quadratic equations$$x^{2}+2x\sqrt{3}+3=0$$ are real and equal.
In light of the above statements, choose the most appropriate answer from the options given below.

Statement 1 : $$(x^{2}+3x+1)=(x-2)^{2}$$
                    $$X^2+3X+1=X^2-4X+4$$
                     X = 3/7
Therefore, it is not a quadratic equation.

Statement 2 : $$x^{2}+2x\sqrt{3}+3=0$$
                      Discriminant of quadratic equation = $$b^2-4ac$$
                                                                           = $$\left(2\sqrt{3}\right)^2-12$$
                                                                           = 0
Hence, the quadratic equation has real and equal roots.

MAT Quant Questions | MAT Quantitative Ability

MAT DILR Questions | LRDI Questions For MAT

MAT Verbal Ability Questions | VARC Questions For MAT