Sign in
Please select an account to continue using cracku.in
↓ →
In $$\triangle ABC,\angle B = 90^{o}, BC = 5 cm, AC - AB =1 cm$$, then $$\frac{1 + \sin(C)}{1 + \cos(C)}$$ is
In a right angled triangle ABC with right angle at B : $$AB^2+BC^2=AC^2$$.
given, BC = 5 , (AC-AB) = 1 .
Hence, we can write : $$AB^2+5^2=(1+AB)^2$$
24 = 2 (AB)
so, AB = 12 cm.
AC = 1 + AB = 13 cm.
BC = $$\sqrt{13^2-12^2}=\ 5$$
Hence, Sin(C) = $$\dfrac{\ AB}{AC}$$ = $$\dfrac{\ 12}{13}$$
Cos(C) = $$\dfrac{\ BC}{AC}$$ = $$\dfrac{\ 5}{13}$$
Therefore, $$\dfrac{1 + \sin(C)}{1 + \cos(C)}$$ = $$\dfrac{25}{18}$$ .