Sign in
Please select an account to continue using cracku.in
↓ →
If $$x^{3}+y^{3}=468$$ and x+y=12, then value of $$x^{4}+y^{4}$$ will be
Given,
$$x^{3}+y^{3}=468$$ and x+y=12
We know,
$$x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)$$
Now, $$12\left(x^2+y^2-xy\right)=468$$
or, $$x^2+y^2-xy=39$$ -->(1)
or, $$\left(x+y\right)^2-2xy-xy=39$$
or, $$12^2-3xy=39$$
or, $$3xy=144-39=105$$
or, $$3xy=105$$
or, $$xy=35$$
Now, from equation (1),
$$x^2+y^2-35=39$$
or, $$x^2+y^2=\ 39+35\ =\ 74$$
So, $$x^4+y^4=\ \left(x^2+y^2\right)^2-2x^2y^2=74^2-2\left(35\right)^2$$
or, $$x^4+y^4=74^2-2\left(35\right)^2$$
or, $$x^4+y^4=5476-2450$$
or, $$x^4+y^4=3026$$