Question 17

$$\sqrt{2+\sqrt{3}}\times\sqrt{2+\sqrt{2+\sqrt{3}}}\times\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\times\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}$$ is equal to

Let, $$\sqrt{\ 2+\sqrt{\ 3}}=x$$

So, the given expression, $$\sqrt{2+\sqrt{3}}\times\sqrt{2+\sqrt{2+\sqrt{3}}}\times\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\times\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}$$ can be written as:

=$$x\sqrt{\ 2+x}\sqrt{\ 2+\sqrt{\ 2+x}}\sqrt{\ 2-\sqrt{\ 2+x}}$$

=$$x\sqrt{\ 2+x}\sqrt{\ \left(2\right)^2-\left(\sqrt{\ 2+x}\right)^2}$$

=$$x\sqrt{\ 2+x}\sqrt{\ 4-\left(2+x\right)}$$

=$$x\sqrt{\ 2+x}\sqrt{\ 2-x}$$

=$$x\sqrt{\ 2^2-x^2}$$

=$$x\sqrt{4-x^2}$$

=$$x\sqrt{4-\left(\sqrt{\ 2+\sqrt{\ 3}}\right)^2}$$

=$$x\sqrt{4-\left(\ 2+\sqrt{\ 3}\right)}$$

=$$x\sqrt{2-\sqrt{\ 3}}$$

=$$\sqrt{\ 2+\sqrt{\ 3}}\sqrt{2-\sqrt{\ 3}}$$

=$$\sqrt{\left(2\right)^2-\left(\sqrt{\ 3}\right)^2}$$

=$$\sqrt{\ 4-3}$$

=1

MAT Quant Questions | MAT Quantitative Ability

MAT DILR Questions | LRDI Questions For MAT

MAT Verbal Ability Questions | VARC Questions For MAT