Quadratic Equation Questions for IBPS PO PDF

0
6836
Quadratic Equation Questions for IBPS PO PDF
Quadratic Equation Questions for IBPS PO PDF

Quadratic Equation Questions for IBPS PO PDF

Download Top-15 Banking Exams Quadratic Equation Questions PDF. Banking Exams Quadratic Equation questions based on asked questions in previous exam papers very important for the Banking  exams.

Download Quadratic Equation Questions for IBPS PO PDF

105 IBPS PO Mocks for just Rs. 149

Download IBPS PO Previous Papers PDF

Take a IBPS PO free mock test

Instructions

In the following questions two equations numbered I and II are given. You have to solve both the equations and
Give answer a: if x > y
Give answer b: if x ≥ y
Give answer c: if x < y
Give answer d: if x ≤ y
Give answer e: if x = y or the relationship cannot be established.

Question 1: I.  $x^{2}-3x-88=0$
II. $y^{2}+8y-48=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 2: I.  $5x^{2}+29x+20=0$
II. $25y^{2}+25y+6=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 3: I.  $2x^{2}-11x+12=0$
II. $2y^{2}-19y+44=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 4: I.  $3x^{2}+10x+8=0$
II. $3y^{2}+7y+4=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 5: I.  $2x^{2}+21x+10=0$
II. $3y^{2}+13y+14=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Instructions

In the following questions two equations numbered I and II are given. You have to solve both equations and
Give answer If

a. x ˃ y
b. x ≥ y
c. x ˂ y
d. x ≤ y
e. x = y or the relationship cannot be established

Question 6: I. ${x^2}$ – 7x + 10 = 0
II. ${y^2}$ + 11y + 10 = 0

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

Take a free mock test for IBPS-PO

790 Mocks (cracku Pass) Just Rs. 299

Question 7: I. ${x^2}$ + 28x + 192 = 0
II. ${y^2}$ + 16y + 48 = 0

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

Question 8: I.2x – 3y = – 3.5
II. 3x + 2y = – 6.5

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

Question 9: I. ${x^2}$ + 8x + 15 = 0
II. ${y^2}$ + 11y + 30 = 0

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

Question 10: I. x = $\sqrt {3136} $
II.$ {y^2}$ = 3136

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

Take a free mock test for IBPS-PO

IBPS PO  previous year papers

Instructions

In each of these questions two equations numbered I and II are given. You have to solve both the equations and –
Give answer a: if x < y
Give answer b: if x ≤ y
Give answer c: if x > y
Give answer d: if x ≥ y
Give answer e: if x = y or the relationship cannot be established.

Question 11: I.  $x^{2}+13x+42=0$
II. $y^{2} +19y+90=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Question 12: I.   $x^{2}-15x+56=0$
II. $y^{2} -23y+132=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Question 13: I. $x^{2}+7x+12=0$
II. $y^{2} +6y+8=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Question 14: I. $x^{2}-22x+120=0$
II. $y^{2} -26y+168=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Question 15: I.$x^{2}+12x+32=0$
II. $y^{2} +17y+72=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Answers & Solutions:

1) Answer (E)

I.$x^{2} – 3x – 88 = 0$

=> $x^2 + 8x – 11x – 88 = 0$

=> $x (x + 8) – 11 (x + 8) = 0$

=> $(x + 8) (x – 11) = 0$

=> $x = -8 , 11$

II.$y^{2} + 8y – 48 = 0$

=> $y^2 + 12y – 4y – 48 = 0$

=> $y (y + 12) – 4 (y + 12) = 0$

=> $(y + 12) (y – 4) = 0$

=> $y = -12 , 4$

$\therefore$ No relation can be established.

2) Answer (C)

I.$5x^{2} + 29x + 20 = 0$

=> $5x^2 + 25x + 4x + 20 = 0$

=> $5x (x + 5) + 4 (x + 5) = 0$

=> $(x + 5) (5x + 4) = 0$

=> $x = -5 , \frac{-4}{5}$

II.$25y^{2} + 25y + 6 = 0$

=> $25y^2 + 10y + 15y + 6 = 0$

=> $5y (5y + 2) + 3 (5y + 2) = 0$

=> $(5y + 3) (5y + 2) = 0$

=> $y = \frac{-3}{5} , \frac{-2}{5}$

Therefore $x < y$

3) Answer (D)

I.$2x^{2} – 11x + 12 = 0$

=> $2x^2 – 8x – 3x + 12 = 0$

=> $2x (x – 4) – 3 (x – 4) = 0$

=> $(x – 4) (2x – 3) = 0$

=> $x = 4 , \frac{3}{2}$

II.$2y^{2} – 19y + 44 = 0$

=> $2y^2 – 8y – 11y + 44 = 0$

=> $2y (y – 4) – 11 (y – 4) = 0$

=> $(y – 4) (2y – 11) = 0$

=> $y = 4 , \frac{11}{2}$

$\therefore x \leq y$

4) Answer (D)

I.$3x^{2} + 10x + 8 = 0$

=> $3x^2 + 6x + 4x + 8 = 0$

=> $3x (x + 2) + 4 (x + 2) = 0$

=> $(x + 2) (3x + 4) = 0$

=> $x = -2 , \frac{-4}{3}$

II.$3y^{2} + 7y + 4 = 0$

=> $3y^2 + 3y + 4y + 4 = 0$

=> $3y (y + 1) + 4 (y + 1) = 0$

=> $(y + 1) (3y + 4) = 0$

=> $y = -1 , \frac{-4}{3}$

$\therefore x \leq y$

5) Answer (E)

I.$2x^{2} + 21x + 10 = 0$

=> $2x^2 + x + 20x + 10 = 0$

=> $x (2x + 1) + 10 (2x + 1) = 0$

=> $(x + 10) (2x + 1) = 0$

=> $x = -10 , \frac{-1}{2}$

II.$3y^{2} + 13y + 14 = 0$

=> $3y^2 + 6y + 7y + 14 = 0$

=> $3y (y + 2) + 7 (y + 2) = 0$

=> $(y + 2) (3y + 7) = 0$

=> $y = -2 , \frac{-7}{3}$

$\therefore$ No relation can be established.

6) Answer (A)

I.$x^{2} – 7x + 10 = 0$

=> $x^2 – 5x – 2x + 10 = 0$

=> $x (x – 5) – 2 (x – 5) = 0$

=> $(x – 5) (x – 2) = 0$

=> $x = 5 , 2$

II.$y^{2} + 11y + 10 = 0$

=> $y^2 + 10y + y + 10 = 0$

=> $y (y + 10) + 1 (y + 10) = 0$

=> $(y + 10) (y + 1) = 0$

=> $y = -10 , -1$

$\therefore x > y$

7) Answer (D)

I.$x^{2} + 28x + 192 = 0$

=> $x^2 + 16x + 12x + 192 = 0$

=> $x (x + 16) + 12 (x + 16) = 0$

=> $(x + 16) (x + 12) = 0$

=> $x = -16 , -12$

II.$y^{2} + 16y + 48 = 0$

=> $y^2 + 12y + 4y + 48 = 0$

=> $y (y + 12) + 4 (y + 12) = 0$

=> $(y + 12) (y + 4) = 0$

=> $y = -12 , -4$

$\therefore x \leq y$

8) Answer (C)

I : $2x – 3y = -3.5$

II : $3x + 2y = -6.5$

Multiplying eqn(I) by 2 and eqn(II) by 3, and then adding both equations, we get :

=> $(4x + 9x) + (-6y + 6y) = (-7 -19.5)$

=> $13x = -26.5$

=> $x = \frac{-26.5}{13} \approx -2$

=> $y = \frac{3x + 6.5}{2} = 0.25$

Hence $x < y$

9) Answer (B)

I.$x^{2} + 8x + 15 = 0$

=> $x^2 + 5x + 3x + 15 = 0$

=> $x (x + 5) + 3 (x + 5) = 0$

=> $(x + 5) (x + 3) = 0$

=> $x = -5 , -3$

II.$y^{2} + 11y + 30 = 0$

=> $y^2 + 5y + 6y + 30 = 0$

=> $y (y + 5) + 6 (y + 5) = 0$

=> $(y + 6) (y + 5) = 0$

=> $y = -6 , -5$

$\therefore x \geq y$

10) Answer (B)

I. $x = \sqrt {3136} $

=> $x = 56$

II.$ {y^2} = 3136$

=> $y = \sqrt{3136} = \pm 56$

$\therefore x \geq y$

11) Answer (C)

I.$x^{2} + 13x + 42 = 0$

=> $x^2 + 7x + 6x + 42 = 0$

=> $x (x + 7) + 6 (x + 7) = 0$

=> $(x + 7) (x + 6) = 0$

=> $x = -7 , -6$

II.$y^{2} + 19y + 90 = 0$

=> $y^2 + 9y + 10y + 90 = 0$

=> $y (y + 9) + 10 (y + 9) = 0$

=> $(y + 9) (y + 10) = 0$

=> $y = -9 , -10$

$\therefore x > y$

12) Answer (A)

I.$x^{2} – 15x + 56 = 0$

=> $x^2 – 8x – 7x + 56 = 0$

=> $x (x – 8) – 7 (x – 8) = 0$

=> $(x – 8) (x – 7) = 0$

=> $x = 8 , 7$

II.$y^{2} – 23y + 132 = 0$

=> $y^2 – 11y – 12y + 132 = 0$

=> $y (y – 11) – 12 (y – 11) = 0$

=> $(y – 11) (y – 12) = 0$

=> $y = 11 , 12$

$\therefore x < y$

13) Answer (E)

I.$x^{2} + 7x + 12 = 0$

=> $x^2 + 3x + 4x + 12 = 0$

=> $x (x + 3) + 4 (x + 3) = 0$

=> $(x + 3) (x + 4) = 0$

=> $x = -3 , -4$

II.$y^{2} + 6y + 8 = 0$

=> $y^2 + 4y + 2y + 8 = 0$

=> $y (y + 4) + 2 (y + 4) = 0$

=> $(y + 4) (y + 2) = 0$

=> $y = -4 , -2$

Because $-2 > -4$ and $-3 > -4$

Therefore, no relation can be established.

14) Answer (B)

I.$x^{2} – 22x + 120 = 0$

=> $x^2 – 10x – 12x + 120 = 0$

=> $x (x – 10) – 12 (x – 10) = 0$

=> $(x – 10) (x – 12) = 0$

=> $x = 10 , 12$

II.$y^{2} – 26y + 168 = 0$

=> $y^2 – 12y – 14y + 168 = 0$

=> $y (y – 12) – 14 (y – 12) = 0$

=> $(y – 12) (y – 14) = 0$

=> $y = 12 , 14$

$\therefore x \leq y$

15) Answer (D)

I.$x^{2} + 12x + 32 = 0$

=> $x^2 + 8x + 4x + 32 = 0$

=> $x (x + 8) + 4 (x + 8) = 0$

=> $(x + 8) (x + 4) = 0$

=> $x = -8 , -4$

II.$y^{2} + 17y + 72 = 0$

=> $y^2 + 9y + 8y + 72 = 0$

=> $y (y + 9) + 8 (y + 9) = 0$

=> $(y + 9) (y + 8) = 0$

=> $y = -9 , -8$

$\therefore x \geq y$

Top Rated Banking Study Material

DOWNLOAD APP FOR IBPS Clerk MOCKS

We hope this Quadratic Equation Questions for IBPS PO  will be highly useful for your preparation.

LEAVE A REPLY

Please enter your comment!
Please enter your name here