0
1030

Here you can download CMAT 2022 – important Number Series Questions PDF by Cracku. Very Important Number Series Questions for CMAT 2022 based on asked questions in previous exam papers. These questions will help your CMAT preparation. So kindly download the PDF for reference and do more practice.

Question 1:Â What should come next in the number series ?
1 8 3 6 5 4 7 2 9 1 8 3 6 5 4 7 2 1 8 3 6 5 4 7 1 8 3 6 5 4

a)Â 1

b)Â 2

c)Â 4

d)Â 8

e)Â None of these

Question 2:Â What will come in place of both the question marks (?) in the following question ?$\frac{(?)^{0.6}}{104}=\frac{26}{(?)^{1.4}}$

a)Â 58

b)Â -48

c)Â -56

d)Â 42

e)Â -52

Question 3:Â Out of the fractions $\frac{1}{2}, \frac{7}{8}, \frac{3}{4}, \frac{5}{6}$, and $\frac{6}{7}$ what is the difference between the largest and smallest fractions ?

a)Â $\frac{7}{13}$

b)Â $\frac{3}{8}$

c)Â $\frac{4}{7}$

d)Â $\frac{1}{6}$

e)Â None of these

Question 4:Â What will come in place of the question mark (?) in the following number series?
9Â  10Â  39Â  220Â  ?Â  14382

a)Â 1589

b)Â 1598

c)Â 1958

d)Â 1985

e)Â 1835

Question 5:Â What will come in place of thequestion mark (?) in the following number series?
121Â  238Â  472Â  ?Â  1876Â  3748

a)Â 1008

b)Â 948

c)Â 944

d)Â 940

e)Â 1005

Question 6:Â What will come in place of thequestion mark (?) in the following number series?
44Â  ?Â  99Â  Â 148.5 Â 222.75Â  334.125

a)Â 44

b)Â 55

c)Â 66

d)Â 33

e)Â 35

Question 7:Â What will come in place of thequestion mark (?) in the following number series?
33Â  16.5Â  ?Â  24.75Â  Â  49.5Â  123.75

a)Â 18.5

b)Â 16.5

c)Â 8.5

d)Â 8.25

e)Â None of these

Question 8:Â What will come in place of the question mark (?) in the following number series?
20Â  23Â  30Â  43Â  64Â  ?

a)Â 95

b)Â 90

c)Â 100

d)Â 105

e)Â 96

Question 9:Â What should come in place of the question mark (?) in the following number series ?
1, 5, 17, 53, 161, 485, ?

a)Â 1168

b)Â 1254

c)Â 1457

d)Â 1372

e)Â None of these

Question 10:Â What approximate value should come in place of the question mark (?) in the following question?
$54.786 \div 10.121 \times 4.454 = ?$

a)Â 84

b)Â 48

c)Â 118

d)Â 58

e)Â 24

Question 11:Â What should come in place of the question mark (?) in the following number series?
2 5 11 23 47 95 ?

a)Â 168

b)Â 154

c)Â 191

d)Â 172

e)Â None of these

Question 12:Â What should come in place of the question mark (?) in the following number series?
1 4 14 45 139 422 ?

a)Â 1268

b)Â 1234

c)Â 1272

d)Â 1216

e)Â None of these

Instructions

What should come in place of question mark (?) in the following number series ?

Question 13:Â 31, 35, 44, 60, 85, ?

a)Â 121

b)Â 111

c)Â 109

d)Â 97

e)Â None of these

Question 14:Â 9, 49, 201, 1009, ?, 20209, 80841

a)Â 4054

b)Â 4049

c)Â 4050

d)Â 4041

e)Â None of these

Question 15:Â 1, 121, 441, 961, 1681, ?

a)Â 2701

b)Â 2511

c)Â 2611

d)Â 2801

e)Â None of these

Question 16:Â 668, 656, 632, 584, ?, 296

a)Â 392

b)Â 438

c)Â 488

d)Â 536

e)Â None of these

Question 17:Â 36, 20, ?, 8, 6, 5

a)Â 10

b)Â 12

c)Â 14

d)Â 16

e)Â None of these

Question 18:Â What is the least number to be added to 2530 to make it a perfect square ?

a)Â 50

b)Â 65

c)Â 75

d)Â 80

e)Â None of these

Question 19:Â What would be the compound interest accrued on an amount of Rs. 9,000 at the rate of 11 p.c.p.a. in two years ?

a)Â Rs. 2089.90

b)Â Rs. 2140.90

c)Â Rs. 2068.50

d)Â Rs. 2085.50

e)Â None of these

Question 20:Â 16 8 12 30 ? 472.5

a)Â 104

b)Â 103

c)Â 106

d)Â 105

e)Â None of these

The series can be shown as below

1 8 3 6 5 4 7 2 9
1 8 3 6 5 4 7 2
1 8 3 6 5 4 7
1 8 3 6 5 4

After this, the series has to repeat itself and hence, the next term will be 1

$\frac{(x)^{0.6}}{104}=\frac{26}{(x)^{1.4}}$

${(x)^{0.6}} * {(x)^{01.4}}$ = 104*26

${(x)^{2}}$ = 104*26

x = Â±52

Given values are ,
$\frac{1}{2}$ = 0.5

$\frac{7}{8}$ = 0.87

$\frac{3}{4}$ = 0.75

$\frac{5}{6}$ = 0.83

$\frac{6}{7}$ = 0.86

âˆ´ Required difference = $\frac{7}{8}$ – $\frac{1}{2}$ = (7-4)/8 = 3/8

The pattern followed isÂ :

9 $\times 1 + 1^2$ = 10

10Â $\times 3 + 3^2$ =Â 39

39Â $\times 5 + 5^2$ =Â 220

220Â $\times 7 + 7^2$ =Â 1589

1589Â $\times 9 + 9^2$ =Â 14382

Each number is multiplied by 2 and then 4 is subtracted from it.

121 $\times 2 – 4$ = 238

238Â $\times 2 – 4$ =Â 472

472Â $\times 2 – 4$ =Â 940

940Â $\times 2 – 4$ =Â 1876

1876Â $\times 2 – 4$ =Â 3748

Each number is multiplied by $\frac{3}{2}$

44 $\times \frac{3}{2}$ =Â 66

66Â $\times \frac{3}{2}$ =Â 99

99Â $\times \frac{3}{2}$ =Â 148.5

148.5Â $\times \frac{3}{2}$ =Â 222.75

222.75Â $\times \frac{3}{2}$ =Â 334.125

The pattern followed isÂ :

33 $\times \frac{1}{2}$ = 16.5

16.5Â $\times \frac{2}{2}$ =Â 16.5

16.5Â $\times \frac{3}{2}$ =Â 24.75

24.75Â $\times \frac{4}{2}$ =Â 49.5

49.5Â $\times \frac{5}{2}$ =Â 123.75

Numbers of the form $n^2 – (n-1)$ are added, where $n$ is an integer starting from 2

23 $+ 2^2 – 1$ = 23

23Â $+ 3^2 – 2$ =Â 30

30Â $+ 4^2 – 3$ =Â 43

43Â $+ 5^2 – 4$ =Â 64

64Â $+ 6^2 – 5$ =Â 95

The pattern here followed isÂ :

1 * 3 + 2 = 5

5Â * 3 + 2 =Â 17

17Â * 3 + 2 =Â 53

53Â * 3 + 2 =Â 161

161Â * 3 + 2 =Â 485

485Â * 3 + 2 =Â 1457

ExpressionÂ : $54.786 \div 10.121 \times 4.454 = ?$

= $\frac{55}{10} \times 4.5$

= $24.75 \approx 24$

The pattern here followed isÂ :

2 * 2 + 1 = 5

5 *Â 2 + 1 =Â Â 11

11 *Â 2 + 1 =Â 23

23 *Â 2 + 1 =Â 47

47 *Â 2 + 1 =Â 95

95 *Â 2 + 1 =Â 191

The pattern here followed isÂ :

1Â * 3 +Â 1 = 4

4Â * 3 +Â 2 = 14

14Â * 3 + 3 = 45

45Â * 3 +Â 4 = 139

139Â * 3 + 5 = 422

422 * 3 + 6 =Â 1272

The pattern here followed isÂ :

31 + $2^2$ = 35

35 +Â $3^2$ =Â 44

44 +Â $4^2$ =Â 60

60 +Â $5^2$ =Â 85

85 +Â $6^2$ =Â 121

The pattern here followed isÂ :

9 Â  Â  Â * 5 + 4 = 49

49 Â  Â  * 4 + 5 = 201

201 Â  * 5 + 4 = 1009

1009 Â * 4 + 5 =Â 4041

4041 Â * 5 + 4 = 20209

20209 * 4 + 5 = 80841

The pattern here followed isÂ :

$1^2$ Â = 1

$11^2$ =Â 121

$21^2$ =Â 441

$31^2$ =Â 961

$41^2$ =Â 1681

$51^2$ =Â 2601

The pattern here followed isÂ :

668 – 1 * 12 = 656

656 – 2 * 12 = 632

632 – 4 * 12 = 584

584 – 8 * 12 =Â 488

488 – 16 * 12 = 296

The pattern here followed isÂ :

$\frac{36}{2} + 2$ = 20

$\frac{20}{2} + 2$ =Â 12

$\frac{12}{2} + 2$ = 8

$\frac{8}{2} + 2$ =Â 6

$\frac{6}{2} + 2$ =Â 5

We know that $50^2 = 2500$ and $51^2 = 2601$

$\because$ 2500Â < 2530Â < 2601

$\therefore$ Required number = 2601 – 2530 = 71

$C.I. = P [(1 + \frac{R}{100})^T – 1]$

= $9000 [(1 + \frac{11}{100})^2 – 1]$

= $9000 [(1.11)^2 – 1]$

= $9000 \times (1.2321 – 1)$

= $9000 \times 0.2321$ = Rs. $2,088.90$

Odd multiples of $\frac{1}{2}$ are multiplied
16 $\times \frac{1}{2}$ = 8
8Â $\times \frac{3}{2}$ =Â 12
12Â $\times \frac{5}{2}$ =Â 30
30Â $\times \frac{7}{2}$ =Â 105
105Â $\times \frac{9}{2}$ =Â 472.5