0
550

Approximation Questions For IBPS RRB Clerk

Download Top-20 IBPS RRB Clerk Approximation Questions PDF. Approximation questions based on asked questions in previous year exam papers very important for the IBPS RRB Assistant exam

Question 1: What approximate value should come in place of the question mark (?) in the following questions?
$21 + 68 \div 17 = ?$

a) 25

b) 35

c) 40

d) 10

Question 2: What approximate value should comein place of the question mark (?) in the following equation?
($\frac{1}{9}\div\frac{1}{9}$ of $\frac{1}{3}$) of $\frac{1}{6}=?$

a) $\frac{1}{6}$

b) $\frac{1}{2}$

c) $\frac{1}{9}$

d) $\frac{1}{3}$

Question 3: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{29.96}{5.08} – \frac{7.99}{4.01} + \frac{31.97}{7.94}$

a) $6$

b) $7$

c) $8$

d) $9$

e) $10$

Question 4: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{107.94}{2.99*3.02} – \frac{44.92}{8.97}$

a) $6$

b) $7$

c) $8$

d) $9$

e) $10$

Question 5: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{71.94}{8.99} * \frac{62.91}{7.02}$

a) $64$

b) $72$

c) $80$

d) $81$

e) $63$

Question 6: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$50.011 – \frac{35.996}{42.007} *48.998$

a) $6$

b) $7$

c) $8$

d) $9$

e) $10$

Question 7: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{\sqrt{80.98 * 440}}{6.99}$

a) $24$

b) $27$

c) $30$

d) $32$

e) $36$

Question 8: What approximate value should come in place of (?) in the following equation ?
9876 $\div$  24.96 + 215.005 – ? = 309.99

a) 395

b) 295

c) 300

d) 315

e) 310

Question 9: What approximate value should come in place of the question mark (?) in the following question ?
$45.709 \div 11.342 \times 6.667 = ?$

a) 88

b) 46

c) 112

d) 56

e) 27

Question 10: What approximate value should come in place of the question mark (?) in the following question?
$54.786 \div 10.121 \times 4.454 = ?$

a) 84

b) 48

c) 118

d) 58

e) 24

Question 11: What approximate value should come in place of the question mark (?) in the following questions?
$59.786 \div 14.444 \times 8.321 = ?$

a) 49

b) 58

c) 22

d) 66

e) 34

Question 12: What approximate value should come in place of the question mark (?) in the following question?
$4275 \div 496 \times (21)^{2} = ?$

a) 3795

b) 3800

c) 3810

d) 3875

e) 3995

Question 13: What approximate value should come in place of the question mark (?) in the following question? (You are not expected to calculate the exact value)
$9980 \div 49 \times (4.9)^{2} – 1130 = ?$

a) 3800

b) 4500

c) 2600

d) 3000

e) 4080

Question 14: What is the approximate value of $\frac{(\sqrt{334} + \sqrt{223}) * (\sqrt{334} – \sqrt{223})}{(\sqrt{111} + \sqrt{11}) * (\sqrt{111} – \sqrt{11})}$?

a) 1.01

b) 1.10

c) 1.11

d) 1.21

Question 15: What is the approximate value of 29/182?

a) .14

b) .13

c) .17

d) .16

e) .18

By applying BODMAS we have
=$21+(68\div17)$
=21+4
=25

($\dfrac{1}{9}\div\dfrac{1}{9}$  of  $\dfrac{1}{3}$) of $\dfrac{1}{6} = (\dfrac{1}{9} \div \dfrac{1}{27}$)  of  $\dfrac{1}{6}$

$= \dfrac{1}{9} \times 27$  of  $\dfrac{1}{6}$

$= 3 \times \dfrac{1}{6} = \dfrac{1}{2}$

The given expression can be approximated to $\frac{30}{5} – \frac{8}{4} + \frac{32}{8}$
= $6 – 2 + 4$
=$8$.
Therefore, option C is the right answer.

The given expression can be approximated to $\frac{108}{3*3} – \frac{45}{9}$
=$\frac{108}{9} – \frac{45}{9}$
=$\frac{63}{9}$
=$7$.
Therefore, option B is the right answer.

The given expression can be approximated to $\frac{72}{9} * \frac{63}{7}$.
=$8*9$
=$72$
Therefore, option B is the right answer.

The given expression can be simplified as $50 – \frac{36}{42} *49$
=$50 – \frac{6}{7} *49$
=$50 – 42$
= $8$.
Therefore, option C is the right answer.

The given expression can be approximated to $\frac{\sqrt{81 * 441}}{7}$
=$\frac{9*21}{7}$
=$9*3$
=$27$.
Therefore, option B is the right answer.

Expression : 9876 $\div$  24.96 + 215.005 – ? = 309.99

=> $\frac{9875}{25} + 215 – ? = 310$

=> $395 + 215 – 310 = ?$

=> $? = 610 – 310 = 300$

Expression : $45.709 \div 11.342 \times 6.667 = ?$

= $\frac{44}{11} \times 7$

= $4 \times 7 = 28$

$\approx$ 27

Expression : $54.786 \div 10.121 \times 4.454 = ?$

= $\frac{55}{10} \times 4.5$

= $24.75 \approx 24$

Expression : $59.786 \div 14.444 \times 8.321 = ?$

= $\frac{60}{15} \times 8$

= $4 \times 8$

= $32 \approx 34$

Expression : $4275 \div 496 \times (21)^{2} = ?$

= $\frac{4275 \times 441}{495}$

= 3808.63 $\approx$ 3810

Since an approximate answer is sufficient, you can rewrite the question as $10000 \div 50 \times 5^{2} – 1130$

Following BDMAS rule the result is 3870.

The nearest value is 3800.

Hence Option A is the correct answer.

The formula we use to simplify the expression is (a+b)(a-b) = $a^2- b^2$
So, $\frac{(\sqrt{334} + \sqrt{223}) * (\sqrt{334} – \sqrt{223})}{(\sqrt{111} + \sqrt{11}) * (\sqrt{111} – \sqrt{11})}$ = $\frac{334 – 223}{111-11}$ = 1.11
29/182 $\approx$ 30/180 = 0.16