$$1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...... $$
Use GP formula asÂ
$$\frac{(1-r^n)}{(1-r)}$$
here $$n = \infty$$
therefore, $$\left(\frac{1 - \left(\frac{1}{2}\right)^{\infty}}{1 - \left(\frac{1}{2}\right)}\right)$$
$$\frac{1}{\left(\frac{1}{2}\right)} = 2$$
Create a FREE account and get: