If sum of ₹ 1000 amount to ₹ 1331 in 3 years, compounded annually. Then, find rate of
interest per annum?
Given P = 1000, n = 3 years, A = 1331 rupees.
We know that A = $$P(1 + \frac {r}{100})^n$$
1331 = $$1000(1 + \frac {r}{100})^3$$
$$ \frac {1331}{1000} = (1 + \frac {r}{100})^3$$
$$(\frac{11}{10})^3 = (1 + \frac{r}{100})^3$$
$$(\frac{11}{10}) = (1 + \frac{r}{100})$$
$$(\frac{11}{10}) - 1 = \frac{r}{100}$$
$$(\frac{11 - 10}{10}) = \frac{r}{100}$$
$$\frac{1}{10} = \frac{r}{100}$$
$$\frac{1}{10} = \frac{r}{100}$$
$$ 1 = \frac{r}{10}$$
r = 10
Create a FREE account and get: