Question 44

If sum of ₹ 1000 amount to ₹ 1331 in 3 years, compounded annually. Then, find rate of
interest per annum?

Solution

Given P = 1000, n = 3 years, A = 1331 rupees.

We know that A = $$P(1 + \frac {r}{100})^n$$

                        1331 = $$1000(1 + \frac {r}{100})^3$$

                        $$ \frac {1331}{1000} = (1 + \frac {r}{100})^3$$

                         $$(\frac{11}{10})^3 = (1 + \frac{r}{100})^3$$

                         $$(\frac{11}{10}) = (1 + \frac{r}{100})$$

                         $$(\frac{11}{10}) - 1 = \frac{r}{100}$$

                         $$(\frac{11 - 10}{10}) = \frac{r}{100}$$

                         $$\frac{1}{10} = \frac{r}{100}$$

                         $$\frac{1}{10} = \frac{r}{100}$$

                        $$ 1 = \frac{r}{10}$$

                             r = 10 


Create a FREE account and get:

  • Download RRB Study Material PDF
  • 45+ RRB previous papers with solutions PDF
  • 300+ Online RRB Tests for Free

cracku

Boost your Prep!

Download App