# Simplification Questions for SBI Clerk Set-2 PDF

0
509

## Simplification Questions for SBI Clerk Set-2 PDF

Download SBI Clerk Simplification Questions & Answers PDF for SBI Clerk Prelims and Mains exam. Very Important SBI Clerk Maths Questions with solutions.

Question 1: If 2x + 5y = 109 and 2x + 5 = y + 12 then y – x = ?

a) 7

b) 6

c) 8

d) 9

e) None of these

Question 2: $\frac{\sqrt{7744} \times 66}{203+149}=?$

a) 15

b) 18.5

c) 20

d) 16.5

e) None of these

Question 3: What is the value of (x) in the following equation?
$\frac{(x)^{0.7}}{36}=\frac{9}{(x)^{1.3}}$

a) 17

b) 19

c) 16

d) 14

e) None of these

Question 4: Which value of x does satisfy the inequality $2x^{2} + x – 3 < 0$?

a) -3/2<x<1

b) -1<x<2/3

c) x>1

d) x<-2/5

e) None of these

Question 5: $7^{2} + 3^{4} – 4^{3} = ? – 11^{2}$

a) 55

b) 196

c) 172

d) 187

e) None of these

Question 6: 1/5 of 2/7 of 8/3 of 4095 ?

a) 642

b) 598

c) 648

d) 475

e) None of these

Question 7: $\sqrt{3969}$ $\div$ 1.4 = ? $\times$ 2.5

a) 18

b) 112.5

c) 16

d) 24

e) None of these

Question 8: If 3y + 2x = 47 and 11x = 7y then what is value of y – x ?

a) 4

b) 6

c) 7

d) 5

e) None of these

Question 9: If 2x + 3y + z = 55, x+ z- y = 4 and y – x + z = 12, then what is the value of y ?

a) 7

b) 8

c) 12

d) 9

e) None of these

Instructions

In each of the questions a pair of equations is given. You have to find out the values of x and y and give answer.

Question 10: I. $2x^2 – 7x + 6 = 0$ II. $4y^2 = 9$

a) if $x < y$

b) if $x\leq y$

c) if $x = y$

d) if $x > y$

e) if $x\geq y$

$2x + 5y = 109$ —————Eqn(1)

$2x + 5 = y + 12$

=> $2x – y = 7$ —————-Eqn(2)

Subtracting eqn(2) from eqn(1), we get :

=> $6y = 102$

=> $y = 17$ and $x = 12$

$\therefore$ $y – x = 17 – 12 = 5$

Expression : $\frac{\sqrt{7744} \times 66}{203+149}=?$

= $\frac{88 \times 66}{352}$

= $\frac{66}{4} = 16.5$

Expression : $\frac{(x)^{0.7}}{36}=\frac{9}{(x)^{1.3}}$

=> $(x)^{0.7 + 1.3} = 9 \times 36$

=> $(x)^2 = 324$

=> $x = \sqrt{324} = 18$

Inequality : $2x^{2} + x – 3 < 0$

=> $2x^2 – 2x + 3x – 3 < 0$

=> $2x (x – 1) + 3 (x – 1) < 0$

=> $(2x + 3) (x – 1) < 0$

=> $\frac{-3}{2} < x < 1$

Let unknown quantity be ‘x’.
$7^{2} + 3^{4} – 4^{3} =x- 11^{2}$.
$49+81-64=x-121$.
$x=187$.
Hence, Option D is correct.

1/5 of 2/7 of 8/3 of 4095.
=$\frac{1}{5}\times\frac{2}{7}\times\frac{8}{3}\times4095$.
=$624$.
Hence, Option E is correct.

Let the unknown quantity be $’x’$.
$\sqrt{3969}\div1.4 = x\times2.5$.
$63\div1.4=x\times2.5$.
$x=45\div2.5$.
$x=18$.
Hence, Option A is correct.

This is a system of two equations with two unknowns.

3y + 2x = 47 and
11x = 7y

Multiplying the first equation by 7, we get 21y + 14x = 329
And, multiplying the second equation by 3, we get 33x = 21y

So, 21y + 14x = 329 or 33x + 14x = 329
Hence, 47x = 329

So, x = 7 and y = 11

Therefore, y-x = 4 and the correct answer is option (a)

We have a group of three equations in three unknowns.

2x + 3y + z = 55,
x+ z- y = 4
and y – x + z = 12

Adding the second and third equations together, we get 2z = 16 or z = 8
Adding the first equation and twice the third equation, we get (2x + 3y + z) + 2*(y-x+z) = 55 + 2*12 = 79

Hence, 5y + 3z = 79.
As z=8, it implies that 5y = 55 or y=11

As this is not given in any of the options, the correct answer is option (e)

I. $2x^2 – 7x + 6 = 0$ II. $4y^2 = 9$

1 implies $2x^2 – 4x – 3x + 6 = 0$

So, (2x – 3)(x-2) = 0

ie x = 3/2 or x = 2

2 implies y = $\pm \frac{3}{2}$

So, $x \geq y$

We hope this Simplification Questions for SBI Clerk Exam is so helpful for your preparation.