# Quadratic Equation Questions For IBPS RRB Clerk

Download Top-20 IBPS RRB Clerk Quadratic Equation Questions PDF. Quadratic Equation questions based on asked questions in previous year exam papers very important for the IBPS RRB Assistant exam

Download Quadratic Equation Questions For IBPS RRB Clerk

35 IBPS RRB Clerk Mocks @ Rs. 149

70 IBPS RRB (PO + Clerk) Mocks @ Rs. 199

Take a free mock test for IBPS RRB Clerk

Download IBPS RRB Clerk Previous Papers PDF

**Instructions**

In each of these questions, two equations are given. You have to solve these equations and find out the values of x and y and give answer

**Question 1:Â **I: $x^2-2x-323=0$

II: $y^2-40y+399=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established

**Question 2:Â **I: $\sqrt{x-14}+\sqrt{1444}=\sqrt{2116}$

II: $\dfrac{\sqrt{y}}{\sqrt{3}{y}}=64^\frac{1}{18}$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established

**Question 3:Â **I: $x^2-170x+7221=0$

II: $3y^2+170y+2407=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established

**Question 4:Â **I: $x^2+12\sqrt{11}+143=0$

II: $y^2-22\sqrt{3}y+360=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 5:Â **I: $x^3-128=1727872$

II: $\sqrt{3}{y^2} = \dfrac{\sqrt{2}{y^3}}{121^\frac{5}{6}}$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Instructions**

In each of these questions, two equations are given. You have to solve these equations and find out the values of x and y and give answer

**Question 6:Â **I: $x^2-x-812=0$

II: $y^2+y-1332=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 7:Â **I: $x^2+0.25x-60=0$

II: $y^2-0.33y-8=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 8:Â **I: $\sqrt{x+14}+\sqrt{841} = \sqrt{1369}$

II: $y^2+0.5y-60=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 9:Â **I: $x^2-16\sqrt{5}x+300=0$

II: $y^2-31\sqrt{5}y+750=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 10:Â **I: $6\sqrt{x}+\dfrac{5}{\sqrt{x}} = \sqrt{x}$

II: $\dfrac{2^\frac{5}{9}}{\sqrt[3]{y}} = y^\frac{2}{9}$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

Free Mock Test for IBPS RRB Clerk

IBPS RRB Clerk Previous Papers

**Instructions**

In each of these questions, two equations are given. You have to solve these equations and find out the values of x and y and give answer

**Question 11:Â **I: $x^2+15\sqrt{3}x-378=0$

II: $y^2-6\sqrt{2}y-224=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 12:Â **I: $\dfrac{19}{\sqrt{x}}+\dfrac{18}{\sqrt{x}}=\sqrt{x}$

II: $\dfrac{1369}{\sqrt{y^{-1}}} = y^\frac{5}{2}$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 13:Â **I: $3x^2-76x+481=0$

II: $y^2+6y-187=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 14:Â **I: $x^2+3x-270=0$

II: $y^2+4y-285=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 15:Â **I: $x = \sqrt{9604}$

II: $y^2 = 7569$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Instructions**

**Question 16:Â **I: $3x^2+5x-68=0$

II: $y^2-33y+272=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 17:Â **I: $x^2+6x-1147=0$

II: $y^2-6x-667=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 18:Â **I: $x^2=13456$

II: $y=\sqrt{15129}$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 19:Â **I: $2x^2-3x-629=0$

II: $y^2-4y-252=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

**Question 20:Â **I: $x^2+x-306 = 0$

II: $y^2+5y-696=0$

a)Â x is greater than y

b)Â x is less than y

c)Â x is greater than or equal to y

d)Â x is less than or equal to y

e)Â x is equal to y (or) The relationship between x and y cannot be established.

Quantitative Aptitude formulas PDF

520 Banking Mocks – Just Rs. 499

**Answers & Solutions:**

**1)Â AnswerÂ (D)**

I: $x^2-2x-323=0$

$x^2-19x+17x-323=0$

$x(x-19)+17(x-19)=0$

$(x-19)(x+17)=0$

$x=19$ or $x=-17$

II: $y^2-40y+399=0$

$y^2-19y-21y+399=0$

$y(y-19)-21(y-19)=0$

$(y-19)(y-21)=0$

$y=19$ or $y=21$

Comparing x and y,

$19 = 19$

$19 < 21$

$-17 < 19$

$-17 < 21$

Therefore, x is less than or equal to y.

**2)Â AnswerÂ (A)**

I: $\sqrt{x-14}+\sqrt{1444}=\sqrt{2116}$

$\sqrt{x-14}+38=46$

$\sqrt{x-14}=8$

$x-14=64$

$x=78$

II: $\dfrac{\sqrt{y}}{\sqrt{3}{y}}=64^\frac{1}{18}$

$\dfrac{y^\frac{1}{2}}{y^\frac{1}{3}} = (64^\frac{1}{3})^\frac{1}{6}$

$y^\frac{1}{6} = 4^\frac{1}{6}$

$y=4$

Comparing x and y,

$78>4$

Therefore,x is greater than y.

**3)Â AnswerÂ (A)**

I: $x^2-170x+7221=0$

$x^2-87x-83x+7221=0$

$x(x-87)-83(x-87)=0$

$(x-87)(x-83)=0$

$x=87$ or $x=83$

II: $3y^2+170y+2407=0$

$3y^2+87y+83y+2407=0$

$3y(y+29)+83(y+29)=0$

$(y+29)(3y+83)=0$

$y=-29$ or $y=-\dfrac{83}{3}$

Comparing x and y

$87>-29$

$87>-\dfrac{83}{3}$

$83>-29$

$83>-\dfrac{83}{3}$

Therefore, x is greater than y.

**4)Â AnswerÂ (B)**

I: $x^2+12\sqrt{11}+143=0$

$x^2+13\sqrt{11}x+\sqrt{11}x+143=0$

$x(x+13\sqrt{11})+\sqrt{11}(x+13\sqrt{11})=0$

$(x+13\sqrt{11})(x+\sqrt{11})=0$

$x=-13\sqrt{11}$ or $x=-\sqrt{11}$

The approximate value of $\sqrt{11} = 3$

Then, $x=-39$ or $x=-3$

II: $y^2-22\sqrt{3}y+360=0$

$y^2-20\sqrt{3}y-12\sqrt{3}y+360=0$

$y(y-20\sqrt{3})-12\sqrt{3}(y-20\sqrt{3})=0$

$(y-20\sqrt{3})(y-12\sqrt{3})=0$

$y=20\sqrt{3}$ or $y=12\sqrt{3}$

The approximate value of $\sqrt{3}=1$

Then, $x=20$ or $x=12$

Comparing x and y,

Both the x values are negative and both the y values are positive.

Therefore, x is less than y.

**5)Â AnswerÂ (B)**

I: $x^3-128=1727872$

$x^3 = 1728000$

$x=120$

II: $\sqrt{3}{y^2} = \dfrac{\sqrt{2}{y^3}}{121^\frac{5}{6}}$

$y^\frac{2}{3} = \dfrac{y^\frac{3}{2}}{121^\frac{5}{5}}$

$y^{\frac{3}{2}-\frac{2}{3}} = 121^\frac{5}{6}$

$y^\frac{5}{6}=121^\frac{5}{6}$

$y = 121$

Comparing x and y,

$120 < 121$.

Therefore, x is less than y.

**6)Â AnswerÂ (E)**

I: $x^2-x-812=0$

$x^2-29x+28x-812=0$

$x(x-29)+28(x-29)=0$

$(x-29)(x+28)=0$

$x=29$ or $x=-28$

II: $y^2+y-1332=0$

$y^2+37y-36y-1332=0$

$y(y+37)-36(y+37)=0$

$(y+37)(y-36)=0$

$y=-37$ or $y=36$

Comparing x and y,

$29>-37$

$29<36$

$-28>-37$

$-29<36$

Therefore, The relationship between x and y cannot be established.

**7)Â AnswerÂ (E)**

I: $x^2+0.25x-60=0$

$x^2+\dfrac{x}{4}-60=0$

$4x^2+x-240=0$

$4x^2+16x-15x-240=0$

$4x(x+16)-15(x+16)=0$

$(x+16)(4x-15)=0$

$x=-16$ or $x=\dfrac{15}{4}$

II: $y^2-0.33y-8=0$

$y^2-\dfrac{y}{3}-8=0$

$3y^2-y-24=0$

$3y^2-9y+8y-24=0$

$3y(y-3)+8(y-3)=0$

$(y-3)(3y+8)=0$

$y=3$ or $y=\dfrac{-8}{3}$

Comparing x and y

$-16<3$

$-16$\dfrac{15}{4}>3$

$\dfrac{15}{4}>\dfrac{-8}{3}$

Therefore, The relationship between x and y cannot be established.

**8)Â AnswerÂ (A)**

I: $\sqrt{x+14}+\sqrt{841} = \sqrt{1369}$

$\sqrt{x+14}+29=37$

$\sqrt{x+14}=8$

$x+14=64$

$x=40$

II: $y^2+0.5y-60=0$

$2y^2+y-120=0$

$2y^2+16y-15y-120=0$

$2y(y+8)-15(y+8)=0$

$(y+8)(2y-15)=0$

$y=-8$ or $y=\dfrac{15}{2}=7.5$

Comparing x and y

$40 > -8$

$40 > 7.5$

Therefore, x is greater than y.

**9)Â AnswerÂ (E)**

I: $x^2-16\sqrt{5}x+300=0$

$x^2-10\sqrt{5}x-6\sqrt{5}x+300=0$

$x(x-10\sqrt{5})-6\sqrt{5}(x-10\sqrt{5})=0$

$(x-10\sqrt{5})(x-6\sqrt{5})=0$

$x=10\sqrt{5}$ or $x=6\sqrt{5}$

II: $y^2-31\sqrt{5}y+750=0$

$y^2-25\sqrt{5}y-6\sqrt{5}y+750=0$

$y(y-25\sqrt{5})-6\sqrt{5}(y-25\sqrt{5})=0$

$(y-25\sqrt{5})(y-6\sqrt{5})=0$

$y=25\sqrt{5}$ or $y=6\sqrt{5}$

Comparing x and y,

$10\sqrt{5} < 25\sqrt{5}$

$10\sqrt{5} > 6\sqrt{5}$

$6\sqrt{5} < 25\sqrt{5}$

$6\sqrt{5}=6\sqrt{5}$

Therefore, The relationship between x and y cannot be determined.

**10)Â AnswerÂ (B)**

I: $6\sqrt{x}+\dfrac{5}{\sqrt{x}} = \sqrt{x}$

$\dfrac{6x+5}{\sqrt{x}} = \sqrt{x}$

$6x+5=x$

$5x=-5$

$x=-1$

II: $\dfrac{2^\frac{5}{9}}{\sqrt[3]{y}} = y^\frac{2}{9}$

$2^\frac{5}{9} = y^\frac{2}{9} \times y^\frac{1}{3}$

$2^\frac{5}{9} = y^\frac{5}{9}$

$y=2$

By comparing x and y,

$-1<2$

Therefore, x is less than y.

**11)Â AnswerÂ (E)**

I: $x^2+15\sqrt{3}x-378=0$

$x^2+21\sqrt{3}x-6\sqrt{3}x-378=0$

$x(x+21\sqrt{3})-6\sqrt{3}(x+21\sqrt{3})=0$

$(x+21\sqrt{3})(x-6\sqrt{3})=0$

$x=-21\sqrt{3}$ or $x=6\sqrt{3}$

Approximate value of $\sqrt{3}=2$.

Then, $x = -21\times2 = -42$ or $x = 6\times2 = 12$

II: $y^2-6\sqrt{2}y-224=0$

$y^2-14\sqrt{2}y+8\sqrt{2}y-224=0$

$y(y-14\sqrt{2})+8\sqrt{2}(y-14\sqrt{2})=0$

$(y-14\sqrt{2})(y+8\sqrt{2})=0$

$y=14\sqrt{2}$ or $y=-8\sqrt{2}$

Approximate value of $\sqrt{2} = 1$

Then, $y = 14$ or $y = -8$

By comparing x and y,

$-42 < 14$

$-42 < -8$

$12 < 14$

$12 > -8$

Therefore, The relationship between x and y cannot be determined.

**12)Â AnswerÂ (C)**

I: $\dfrac{19}{\sqrt{x}}+\dfrac{18}{\sqrt{x}}=\sqrt{x}$

$\dfrac{19+18}{\sqrt{x}} = \sqrt{x}$

$x=37$

II: $\dfrac{1369}{\sqrt{y^{-1}}} = y^\frac{5}{2}$

$\dfrac{1369}{y^\frac{-1}{2}} = y^\frac{5}{2}$

$y^\frac{5-1}{2} = 1369$

$y^2 = 1369$

$y = -37$ or $y = +37$

By comparing x and y,

$37 > -37$

$37 = 37$

Therefore, x is greater than or equal to y.

**13)Â AnswerÂ (A)**

I: $3x^2-76x+481=0$

$3x^2-39x-37x+481=0$

$3x(x-13)-37(x-13)=0$

$(x-13)(3x-37)=0$

$x=13$ or $x=\dfrac{37}{3}$

II: $y^2+6y-187=0$

$y^2+17y-11y-187=0$

$y(y+17)-11(y+17)=0$

$(y+17)(y-11)=0$

$y=-17$ or $y=11$

By comparing x and y,

$13>-17$

$13>11$

$\dfrac{37}{3}>-17$

$\dfrac{37}{3}>11$

Therefore, x is greater than y.

**14)Â AnswerÂ (E)**

I: $x^2+3x-270=0$

$x^2+18x-15x-270=0$

$x(x+18)-15(x+18)=0$

$(x-15)(x+18)=0$

$x=15$ or $x=-18$

II: $y^2+4y-285=0$

$y^2+19y-15y-285=0$

$y(y+19)-15(y+19)=0$

$(y-15)(y+19)=0$

$y=15$ or $y=-19$

By comparing x and y,

$15=15$

$15>-19$

$-18<15$

$-18>-19$

Therefore, The relationship between x and y cannot be established.

**15)Â AnswerÂ (A)**

I: $x = \sqrt{9604}$

$x = 98$

II: $y^2 = 7569$

$y = \pm 87$

$y = -87$ or $y=87$

By comparing x and y,

$98 > -87$

$98 > 87$

Therefore, x is greater than y.

**16)Â AnswerÂ (B)**

I: $3x^2+5x-68=0$

$3x^2-12x+17x-68=0$

$3x(x-4)+17(x-4)=0$

$(x-4)(3x+17)=0$

$x=4$ or $x=\dfrac{-17}{3}$

II: $y^2-33y+272=0$

$y^2-16y-17y+272=0$

$y(y-16)-17(y-16)=0$

$(y-16)(y-17)=0$

$y=16$ or $y=17$

By comparing x and y values,

$4 < 16$

$4 <17$

$\dfrac{-17}{3}<16$

$\dfrac{-17}{3}<17$

Therefore, x is less than y.

**17)Â AnswerÂ (E)**

I: $x^2+6x-1147=0$

$x^2+37x-31x-1147=0$

$x(x+37)-31(x+37)=0$

$(x+37)(x-31)=0$

$x=-37$ or $x=31$

II: $y^2-6x-667=0$

$y^2-29y+23y-667=0$

$y(y-29)+23(y-29)=0$

$(y-29)(y+23)=0$

$y=29$ or $y=-23$

By comparing x and y,

$-37 < 29$

$-37 < -23$

$31 > 29$

$31 > -23$

Therefore, The relationship between x and y cannot be established.

**18)Â AnswerÂ (B)**

I: $x^2 = 13456$

$x = \pm 116$

$x = -116$ or $x=116$

II: $y = \sqrt{15129}$

$y = 123$

By comparing x and y values,

$-116 < 123$

$116 < 123$

Therefore, x is less than y.

**19)Â AnswerÂ (E)**

I: $2x^2-3x-629=0$

$2x^2+34x-37x-629=0$

$2x(x+17)-37(x+17)=0$

$(x+17)(2x-37)=0$

$x=-17$ or $x=\dfrac{37}{2}$

II: $y^2-4y-252=0$

$y^2-18y+14y-252=0$

$y(y-18)+14(y-18)=0$

$(y-18)(y+14)=0$

$y=18$ or $y=-14$

By comparing x and y values,

$-17 < 18$

$-17 < -14$

$\dfrac{37}{2}>18$

$\dfrac{37}{2}>-14$

Therefore, The relationship between x and y cannot be determined.

**20)Â AnswerÂ (E)**

I: $x^2+x-306 = 0$

$x^2+18x-17x-306=0$

$x(x+18)-17(x+18)=0$

$(x+18)(x-17)=0$

$x=-18$ or $x=17$

II: $y^2+5y-696=0$

$y^2+29y-24y-696=0$

$y(y+29)-24(y+29)=0$

$(y+29)(y-24)=0$

$y = -29$ or $y = 24$

By comparing x and y values,

-18 > -29

18 < 24

17 > -29

17 < 24

Therefore, The relationship between x and y cannot be established.