0
2511

# Decimals And Fractions Questions For IBPS RRB PO

Download Top-20 IBPS RRB PO Decimals and Fractions Questions PDF. Decimals and Fractions questions based on asked questions in previous year exam papers very important for the IBPS RRB PO (Officer Scale-I, II & III) exam.

Question 1:Â 25 divided by $\frac{1}{5}$

a)Â $\frac{1}{125}$

b)Â 5

c)Â 25

d)Â 125

Question 2:Â $5\large\frac{3}{4}$ – $2\large\frac{1}{2}$ + $11\large\frac{5}{7}$ + $3\large\frac{9}{14}$ – $4\large\frac{2}{3}$ $=$ ?

a)Â $12\large\frac{59}{84}$

b)Â $13\large\frac{79}{84}$

c)Â $13\large\frac{59}{84}$

d)Â $13\large\frac{61}{84}$

e)Â None of these

Question 3:Â 62.5% of 448 + 133.33% of 723 – 61% of 400 = ?

a)Â 1000

b)Â 1150

c)Â 1025

d)Â 950

e)Â None of these

Question 4:Â 3.7+5.98+2.653-4.213-6.12+5.742+2.258=?

a)Â 12

b)Â 14

c)Â 10

d)Â 18

e)Â 16

Question 5:Â $81\large\frac{9}{11}$% of $5225\div20$% of $125\times77\large\frac{7}{9}$% of $2106\div14.28$% of $5733$ $=$ ?

a)Â 284

b)Â 368

c)Â 342

d)Â 460

e)Â None of these

Question 6:Â 169.3425+24.9348-47.8658+13.259+5.579 = 37.2495+?

a)Â 146

b)Â 128

c)Â 134

d)Â 136

e)Â None of these

Question 7:Â $3\Large\frac{1}{3}$ $+$ $11\Large\frac{2}{5}$ $-$ $10\Large\frac{4}{7}$ $+$ $4\Large\frac{7}{15}$ $=$ $2\Large\frac{3}{10}$ $+$ ?

a)Â $5\Large\frac{21}{70}$

b)Â $4\Large\frac{23}{70}$

c)Â $6\Large\frac{23}{72}$

d)Â $6\Large\frac{23}{70}$

e)Â None of these

Question 8:Â $27.27$% of $2112$ $+$ $55.55$% of $3276$ $-$ $23.33$% of $1950$ $=$ ?

a)Â 1857

b)Â 1946

c)Â 1971

d)Â 1941

e)Â None of these

Question 9:Â What should come in place of the question marks in the following equations?
$\frac{?}{24}=\frac{72}{\sqrt{?}}$

a)Â 12

b)Â 16

c)Â 114

d)Â 144

e)Â None of these

Question 10:Â $(299.99999)^{3}$ =?

a)Â 270,00,000

b)Â 9,000,000,000

c)Â 180,000

d)Â $2.7\times10^{7}$

e)Â 270,00,00

The given question can be written as,

25 x (1/5) or 25 x 5 which is equal to 125

Hence, option D is the correct answer.

$5\Large\frac{3}{4}$ – $2\Large\frac{1}{2}$ + $11\Large\frac{5}{7}$ + $3\Large\frac{9}{14}$ – $4\Large\frac{2}{3}$ $=$

$5$ – $2$ + $11$ + $3$ – $4$ + $\Large\frac{3}{4}$ – $\Large\frac{1}{2}$ + $\Large\frac{5}{7}$ + $\Large\frac{9}{14}$ – $\Large\frac{2}{3}$

$=$ $13$ + $\Large\frac{63 – 42 + 60 + 54 – 56}{84}$

$=$ $13\Large\frac{79}{84}$

$12.5$% $\rightarrow$ $\Large\frac{1}{8}$

$62.5$% $\rightarrow$ $\Large\frac{5}{8}$

$62.5$% of $448$ $=$ $\Large\frac{5}{8}$ $\times$ $448 = 280$

$133.33$% $=$ $100$% $+$ $33.33$%

$100$% $\rightarrow$ $1$

$33.33$% $\rightarrow$ $\Large\frac{1}{3}$

$133.33$% $=$ ($1$+$\Large\frac{1}{3}$) $=$ $\Large\frac{4}{3}$

$133.33$% of $723$ $=$ $\Large\frac{4}{3}$ $\times$ $723$ $=$ $964$

$61$% of $400$ $=$ $\Large\frac{61}{100}$ $\times$ $400$ $=$ $244$

$62.5$% of $448$ + $133.33$% of $723$ – $61$% of $400$ $=$ $280$ + $964$ – $244$ $=$ $1000$

Adding all positive terms$3.7+5.98+2.653+5.742+2.258 = 20.333 Adding all negative terms 4.213+6.12 = 10.333$\therefore$(3.7+5.98+2.653+5.742+2.258)-(4.213+6.12) = 20.333-10.333 = 10 5)Â AnswerÂ (C)$9\large\frac{1}{11}$%$=\large\frac{1}{11}81\large\frac{9}{11}$%$=\large\frac{9}{11}81\large\frac{9}{11}$% of$5225=\large\frac{9}{11}\times5225 = 427520$%$=\Large\frac{1}{5}20$% of$125=\Large\frac{1}{5}\times$125$=2511\large\frac{1}{9}$%$=\large\frac{1}{9}77\large\frac{7}{9}$%$=\large\frac{7}{9}77\large\frac{7}{9}$% of$2106=\large\frac{7}{9}\times2106 = 163814.28$%$=\large\frac{1}{7}14.28$% of$5733=\large\frac{1}{7}\times5733 = 819\therefore81\large\frac{9}{11}$% of$5225\div20$% of$125\times77\large\frac{7}{9}$% of$2106\div14.28$% of$5733 =$Â$\Large\frac{4275}{25}\times\Large\frac{1638}{819}=342$6)Â AnswerÂ (B) Adding all Positive terms: 169.3425+24.9348+13.259+5.579$=$213.1153 Adding all Negative terms: 47.8658++37.2495$=$85.1153$\therefore$169.3425+24.9348-47.8658+13.259+5.579 – 37.2495$=$128 7)Â AnswerÂ (D)$3\Large\frac{1}{3}+11\Large\frac{2}{5}-10\Large\frac{4}{7}+4\Large\frac{7}{15}-2\Large\frac{3}{10}=3+11-10+4-2+\Large\frac{1}{3}+\Large\frac{2}{5}-\Large\frac{4}{7}+\Large\frac{7}{15}-\Large\frac{3}{10}=6+\Large\frac{70+84-120+98-63}{210}=6+\Large\frac{69}{210}=$6$\Large\frac{23}{70}$8)Â AnswerÂ (D)$\large\frac{1}{11}=9.09$%$\Rightarrow\large\frac{3}{11}=27.27$%$27.27$% of$2112=\large\frac{3}{11}\times2112=576\large\frac{1}{9}=11.11$%$\large\frac{5}{9}=55.55$%$55.55$% of$3276=\large\frac{5}{9}\times3276=1820\large\frac{1}{30}=3.33$%$\large\frac{7}{30}=23.33$%$23.33$% of$1950$=$\large\frac{7}{30}\times1950=45527.27$% of$2112+55.55$% of$3276-23.33$% of$1950=576+1820-455=1941$9)Â AnswerÂ (D) ExpressionÂ :Â$\frac{?}{24}=\frac{72}{\sqrt{?}}$=>$(?)^{(1+\frac{1}{2})}= 72 \times 24$=>$(?)^{\frac{3}{2}} = 1728 = 12^3$Multiplying exponents by$(\frac{2}{3})$on both sides =>$(?)^{(\frac{3}{2} \times \frac{2}{3})}= (12)^{(3 \times \frac{2}{3})}$=>$(?)=12^2=144$=> Ans – (D) 10)Â AnswerÂ (A) ExpressionÂ :$(299.99999)^{3}$=?$\approx (300)^3$=$2,70,00,000\$