Coordinate Geometry Questions For SSC GD PDF Set – 2

0
300
Coordinate Geometry Questions For SSC GD PDF Set - 2
Coordinate Geometry Questions For SSC GD PDF Set - 2

Coordinate Geometry Questions for SSC GD PDF Set – 2

SSC GD Constable Coordinate Geometry Question paper with answers download PDF based on SSC GD exam previous papers. 40 Very important Coordinate Geometry questions for GD Constable.

Download COORDINATE GEOMETRY SSC GD QUESTIONS SET – 2 PDF

GET 20 SSC GD MOCK FOR JUST RS. 117

FREE SSC EXAM YOUTUBE VIDEOS

Download SSC GD Important Questions PDF

1500+ Must Solve Questions for SSC Exams (Question bank)

Question 1: The coordinates of the vertices of a right angled triangle are A(2,3) B(8,3) and C(2, -2). The triangle is right angled at A. Find the orthocenter of the triangle ABC ?

a) (2,-2)

b) (8,3)

c) (6,3)

d) (2,3)

Question 2: What is the equation of a circle of radius 4 units centered at (1, 2) ?

a) $x^2+y^2-2x-4y+5=0$

b)  $x^2+y^2-2x-4y-11 = 0$

c)  $x^2+y^2+2x-4y-11 = 0$

d)  $x^2+y^2-2x+4y-11 = 0$

Question 3: What is the reflection of the point ( -4, 2) in the line x = -3?

a) (-2, -2)

b) (-2, 2)

c) (1, -2)

d) (1, 2)

Question 4: Find the slope of the line joining A(5,-1) & B(2, 2) ?

a) 1

b) -1

c) 2

d) -2

Question 5: Point P is the midpoint of segment AB. Coordinates of P are (-1 , -1) and B are (-5, -4) What are the coordinates of point A?

a) (3,-2)

b) (-3,-2)

c) (3,2)

d) (-3,2)

Download SSC GD FREE PREVIOUS PAPERS

LATEST FREE SSC GD MOCK 2019

Question 6: In what ratio does the point T(x,3) divide the segment joining the points S(3, -1) and U(-1, 2)?

a) 4:1

b) -4:1

c) 1:4

d) -1:4

Question 7: What is the reflection of the point (-4 , 3) in the line x = -1?

a) (-2 , 3)

b) (2 , -3)

c) (-2 , -3)

d) (2 , 3)

Question 8: At what point does the line 3x – 2y = 12 intersect the Y-axis?

a) (0,-6)

b) (-6,0)

c) (0,6)

d) (6,0)

Question 9: Find the slope of the line parallel to x-3y+2=0 ?

a) -1/3

b) 1/3

c) 3

d) -3

Question 10: Find the point which divides the line joining A(2,3) B(4,1) in the ratio 2:3 internally?

a) (-14/5, -11/5)

b) (14/5, -11/5)

c) (-14/5, 11/5)

d) (14/5, 11/5)

DOWNLOAD APP TO ACESS DIRECTLY ON MOBILE

Daily Free SSC Practice Set

Question 11: If P(x,2) is the centroid of the triangle formed by A(2,y), B(-1,-3) & C(2,6). Then find x*y ?

a) 13

b) 31

c) 3

d) -3

Question 12: What is the reflection of the point (-2,-2) in the line y = -1?

a) (-2 , 0)

b) (-2, -1)

c) (0 , -2)

d) (-2, 1)

Question 13: At what point does the line 3x + 2y = 12 cuts the X-axis?

a) (0,6)

b) (4,0)

c) (-4,0)

d) (0,-6)

Question 14: What is the slope of the line perpendicular to the line 2x+2y=3?

a) -2

b) 2

c) -1

d) 1

Question 15: Find the ratio in which P(3,Y) divides the line joining A(1,-3) and B(4,2) ?

a) 1:2

b) 2:1

c) -2:1

d) -1:2

SSC CGL Free Mock Test

Download SSC GD Constable Syllabus PDF

Question 16: Point P is the midpoint of segment AB. Coordinates of P are (2 , -1) and B are (5, -4) What are the coordinates of point A?

a) (-1, -2)

b) (-1, 2)

c) (1, 2)

d) (1, -2)

Question 17: What is the reflection of the point (-1 , 1) in the line y = 0?

a) (-2, 1)

b) (-2, -1)

c) (-1, -1)

d) (1, -1)

Question 18: What is the slope of the line perpendicular to the line passing through the points (-3 , 1) and (-2 , 2)?

a) 0

b) 1

c) -1

d) 2

Question 19: If P(1,2) is the centroid of the triangle formed by A(2,3), B(-1,-3) & C(x,y). Then find x-y ?

a) -4

b) 4

c) 3

d) -3

Question 20: In what ratio does the point T(1, y) divide the segment joining the points S(3, -1) and U(-1, 2)?

a) 2 : 1

b) 1 : 3

c) 3 : 2

d) 1 : 1

Question 21: What is the reflection of the point (4 , 3) in the line y = -1?

a) (4, 5)

b) (-4, 5)

c) (4, -5)

d) (-4, -5)

Question 22: Find the length of the median BE of a triangle ABC, with vertices A(1,2) , B(2,3) and C(3,6) ?

a) 1 unit

b) 2 units

c) 3 units

d) 4 units

Question 23: Find the slope of the line joining A(-1,2) and B(1, -2) ?

a) -2

b) 0

c) 2

d) undefined

Question 24: If P(2, 3) is the midpoint of A(4, y) and B(x, 1), then find x ?

a) 1

b) 2

c) 0

d) -1

Question 25: What is the reflection of the point ( 2, -2) in the line y = -2?

a) (2, -2)

b) (-2, 2)

c) (-2, -2)

d) (2, 2)

Question 26: Find the equation of median BE of the triangle ABC, with vertices A(1,2) , B(2,3) and C(3,6) ?

a) x=2

b) x=3

c) y=2

d) y=3

100+ Free GK Tests for SSC Exams

Download Free GK PDF

Question 27: What is the slope of the line perpendicular to the line 4x-3y=5 ?

a) -3/4

b) 4/3

c) 3/4

d) -4/3

Question 28: If P(2, 3) is the midpoint of A(4, y) and B(x, 1), then find y ?

a) 2

b) 3

c) 4

d) 5

Question 29: What is the reflection of the point ( 5, 2) in the line y = -1?

a) (-5, 4)

b) (-5, -4)

c) (5, -4)

d) (5, 4)

Question 30: Find the slope of the line joining A(-3, 2) and B(1, 4) ?

a) -1/2

b) 2

c) 1/2

d) -1

Question 31: What is the reflection of the point ( 1, 2) in the line x = -3?

a) (-7, -2)

b) (-7, 2)

c) (7, -2)

d) (7, 2)

Question 32: What is the reflection of the point ( 1, 2) in the line x = -3?

a) (-7, -2)

b) (-7, 2)

c) (7, -2)

d) (7, 2)

Question 33: Find the length of the median AD of a triangle ABC, with vertices A(1,2) , B(2,3) and C(0,5) ?

a) 1 unit

b) 2 units

c) 3 units

d) 4 units

Question 34: Find the slope of the line joining A(1,2) and B(1, -2) ?

a) -4

b) 0

c) 2

d) undefined

Question 35: Find the mid-point of the line joining A(3, -2) and B(-3, -2) ?

a) (3, -2)

b) (-3, 0)

c) (0, -2)

d) (0, 2)

Question 36: What is the reflection of the point ( -3, 2) in the line x = -2?

a) (-1, -2)

b) (-1, 2)

c) (1, -2)

d) (1, 2)

Question 37: Find the slope of the line joining A(-1, -5) and B(2, 4)

a) -3

b) 0

c) 3

d) -1

Question 38: Find the centroid of the triangle with vertices A(2,3), B(-3,2) & C(1,4) ?

a) (0,0)

b) (2,-3)

c) (0,3)

d) (3,0)

Question 39: What is the reflection of the point (4,2) about origin ?

a) (-4, -2)

b) (4, 2)

c) (-4, 2)

d) (4, -2)

Question 40: : Find the equation of the median AD of a triangle ABC, with vertices A(1,2) , B(2,3) and C(3,1) ?

a) y=1

b) y=2

c) y=3

d) y=4

Answers & Solutions:

1) Answer (D)

Orthocentre of a right angled triangle is the vertex where the angle is 90°

Here, it is right angled at A, so A(2, 3) is the orthocentre.

So the answer is option D.

2) Answer (B)

Eq.of a circle of radius r and having centre at ($x_1, y_1$) is $(x-x_1)^2+(y-y_1)^2=r^2$

Hence, $(x-1)^2+(y-2)^2=4^2$

==> $x^2-2x+1+y^2-4y+4 = 16$

==> $x^2+y^2-2x-4y-11 = 0$

So the answer is option B.

3) Answer (B)

(-4, 2) lies on left to the line x=-3

Distance between the line & point is -3-(-4) = 1

So its reflection must be 1 unit to the right side the line , i.e; (-3+1, 2) = (-2, 2)

So the answer is option B.

4) Answer (B)

Slope = $\frac{y_2-y_1}{x_2-x_1}$ = $\frac{2+1}{2-5} = 3/-3 = -1$

So the answer is option B.

5) Answer (C)

Let (x, y) be the coordinates of A, then

$(\frac{x-5}{2} , \frac{y-4}{2}) = (-1, -1)$

x-5 = -2 & y-4 = -2

x = 3 & y = 2

A = (x, y) = (3,2)

So the answer is option C.

SSC GD FREE STUDY MATERIAL

6) Answer (B)

$P(x, y) = (\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})$

$P(x, 3) = (\frac{-1m+3n}{m+n}, \frac{2m-n}{m+n})$

$\frac{2m-n}{m+n} = 3$

$2m-n = 3m+3n$

$-m = 4n$

$m/n = -4/1$

So the answer is option B.

7) Answer (D)

(-4, 3) lies 3 units left to the line x = -1

So its reflection must lie 3 unit right to the line,

So its reflection is (-1+3, 3) = (2, 3)

So the answer is option D.

8) Answer (A)

3x – 2y = 12 lines cuts Y-axis, where x = 0

3(0)-2y = 12

-2y = 12

y = -6

So the point is (0, -6)

So the answer is option A.

9) Answer (B)

Slope of a line ax+by+c = 0 is -a/b

Slope of line x-3y+2=0 = -1/-3 = 1/3

Slope of parallel line = 1/3

So the answer is option B.

10) Answer (D)

$P(x, y) = (\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})$

$P(x, y) = (\frac{2(4)+3(2)}{2+3}, \frac{2(1)+3(3)}{2+3})$

$P(x, y) = (\frac{14}{5}, \frac{11}{5})$

So the answer is option D.

11) Answer (C)

Centroid $= (\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$

$(x, 2) = (\frac{2-1+2}{3}, \frac{y-3+6}{3})$

$(x, 2) = (1, \frac{y+3}{3})$

=> $x = 1$ , & $2 = (y+3)/3$

=> $x = 1$, & $y = 3$

$x*y = 3$

So the answer is option C.

12) Answer (A)

(-2, -2) lies 1 unit below the line y = -1

So its reflection must lie 1 unit above the line,

So its reflection is (-2, -1+1) = (-2, 0)

So the answer is option A.

13) Answer (B)

Put y = 0 in 3x + 2y = 12,

3x = 12

x = 4

So the point is (4,0)

So the answer is option B.

14) Answer (D)

slope of the line perpendicular to the line ax+by+c=0 is, b/a

slope of the line perpendicular to the line 2x+2y=3 is 2/2=1

So the answer is option D.

15) Answer (B)

Let the ratio be m:n

(3, Y) = ($\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}$)

3 = $\frac{4m+n}{m+n}$

3m+3n = 4m+n

2n = m

m/n = 2/1

So the answer is option B.

16) Answer (B)

Let A be (x, y)

(2,-1) = ($\frac{x+5}{2} , \frac{y-4}{2}$)

x+5 = 2*2 and y-4 = -1*2

x = 4-5 and y = -2+4

x = -1 and y = 2

A = (x,y) = (-1,2)

So the answer is option B.

17) Answer (C)

From the diagram answer is (-1,-1)

So the answer is option C.

18) Answer (C)

Slope = m = $\frac{y_2-y_1}{x_2-x_1}$ = $\frac{2-1}{-2+3}$ = $1$

Slope of perpendicular line = -1/m = -1/1 = -1

So the answer is option C.

19) Answer (A)

($\frac{2-1+x}{3} , \frac{3-3+y}{3}$) = (1, 2)

($\frac{1+x}{3} , \frac{y}{3}$) = (1, 2)

1+x = 3 and y = 6

x = 2 and y = 6

x-y = 2-6 = -4

So the answer is option A.

20) Answer (D)

Let the ratio is m:n

1 = $\frac{m(-1)+n(3)}{m+n}$

$m+n = -m+3n$

$2m = 2n$

$m:n = 1:1$

So the answer is option D.

21) Answer (C)

(4, 3) lies above the line y=-1

Distance b/w the line & point is 3-(-1) = 4

So its reflection must be 4 units below the line , i.e; (4, -1-4) = (4, -5)

So the answer is option C.

22) Answer (A)

E = mid point of AC = $(\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})$ = $(\frac{1+3}{2} , \frac{2+6}{2})$ = $(2, 4)$

B = (2 , 3) & E = ( 2 , 4)

Since x values are same,distance = $y_{2}-y_{1} = 4-3 = 1$

So the answer is option A.

23) Answer (A)

slope m = $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-2}{1+1}=-4/2=-2$

So the answer is option A.

24) Answer (C)

Mid point = $(\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})$

(2, 3) = $(\frac{4+x}{2} , \frac{1+y}{2})$

$\frac{4+x}{2}$ = 2

4+x = 4

x = 0

So the answer is option C.

25) Answer (A)

The point (2, -2) lies on the line y = -2, so reflection is itself

So the answer is option A.

26) Answer (A)

E = mid point of AC = $(\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})$ = $(\frac{1+3}{2} , \frac{2+6}{2})$ = $(2, 4)$

B = (2 , 3) & E = ( 2 , 4)

Since x values are same, Equation of BE is x = 2

So the answer is option A.

27) Answer (A)

Slope of a line ax+by+c = 0 is $\frac{-a}{b}$

Slope of the line 4x-3y=5 is m =-4/-3 = 4/3

Slope of a line perpendicular to this line = -1/m = -3/4

So the answer is option A.

28) Answer (D)

Mid point = $(\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})$

(2, 3) = $(\frac{4+x}{2} , \frac{1+y}{2})$

$\frac{1+y}{2}$ = 3

1+y = 6

y = 5

So the answer is option D.

29) Answer (C)

From the diagram reflection of (5 , 2) is (5 , -4)

So the answer is option C.

30) Answer (C)

slope m = $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{1+3}=2/4=1/2$

So the answer is option C.

31) Answer (B)

from the diagram answer is (-7 , 2)

So the answer is option B.

32) Answer (B)

from the diagram answer is (-7 , 2)

So the answer is option B.

33) Answer (B)

D = mid point of BC = $(\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})$ = $(\frac{2+0}{2} , \frac{3+5}{2})$ = $(1, 4)$

A = (1 , 2) & D = ( 1 , 4)

Since x values are same, Distance = $y_{2}-y_{1}=4-2=2$

So the answer is option B.

34) Answer (D)

slope m = $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-2}{1-1}=\infty$

So the answer is option D.

35) Answer (C)

Mid-point = $(\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})$ = $(\frac{3-3}{2} , \frac{-2-2}{2})$ = $( 0 , -2)$

So the answer is option C.

36) Answer (B)

from the diagram answer is (-1 , 2)

So the answer is option B.

37) Answer (C)

slope m = $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4+5}{2+1}=9/3=3$

So the answer is option C.

38) Answer (C)

Centroid = $(\frac{x_{1}+x_{2}+x_{3}}{3} , \frac{y_{1}+y_{2}+y_{3}}{3})$ = $(\frac{2-3+1}{3} , \frac{3+2+4}{3})$ = $(\frac{0}{3} , \frac{9}{3})$ = (0, 3)

So the answer is option C.

39) Answer (A)

To find reflection about origin, just change the signs.

reflection of the point (4,2) about origin is (-4, -2)

So the answer is option A.

40) Answer (B)

A(1,2) , B(2,3) and C(3,1)

D = mid point of B and C = $(\frac{2+3}{2} , \frac{3+1}{2})$ = $(\frac{5}{2} , \frac{4}{2})$ = $(5/2 , 2)$

A(1 , 2) , D(5/2 , 2)

Equation of AD is y = 2 ($\because$ y value is same for both points)

So the answer is option B.

Download SSC GD Previous Papers PDF

DOWNLOAD APP FOR SSC FREE MOCKS

We hope this Coordinate Geometry questions for SSC GD will be highly useful for your preparation.

LEAVE A REPLY

Please enter your comment!
Please enter your name here