Question 98

Find the value of$$ \sqrt{cot^{2}\theta-cos^{2}\theta}$$?

Solution

$$ \sqrt{cot^{2}\theta-cos^{2}\theta}$$

$$ \sqrt{(cos^{2}\theta/sin^{2}\theta)-cos^{2}\theta}$$

$$ \cos^{2}\theta \sqrt{(1/sin^{2}\theta)-1}$$

$$ \cos^{2}\theta \sqrt{(1-sin^{2}\theta)sin^{2}\theta}$$

$$ \cos^{2}\theta \sqrt{cos^{2}\theta-sin^{2}\theta}$$

therefore, $$cot\theta$$ $$cos\theta$$


Create a FREE account and get:

  • Download RRB Study Material PDF
  • 45+ RRB previous papers with solutions PDF
  • 300+ Online RRB Tests for Free

cracku

Boost your Prep!

Download App