Given that
$$\frac{8^x}{2^y}$$.      equation 1
$$3x - y = 5$$Â Â Â Â Â Â Â Â Â Â Â equation 2
Now find the value of x
$$3x = 5+y$$
$$x=\frac{5+y}{3}$$
Now put the value of x in equation 1
we get
= $$\frac{8^\frac{5+y}{3}}{2^y}$$.Â
we know that $$2^3=8 $$ Â Â Â Â Â Â equation 3
Using the above equation 3
= $$\frac{2^{3(5+y)/3}}{2^y}$$.
= $$\frac{2^{(5+y)}}{2^y}$$.
Now minimize the equation
= $${2^{(5+y-y)}}$$.
= $${2^{5}}$$.
= 32Â Â Â Â Â Â Ans
Create a FREE account and get: