If $$a (a + b + c) = 45; b (a + b + c) = 75$$ and $$c ( a + b + c) = 105$$, then find the value of $$a^2 + b^2 + c^2$$.
ATQ
$$a\times (a + b + c)$$ = 45 (i)
$$b\times (a + b + c)$$ = 75Â (ii)
$$c\times (a + b + c)$$= 105 (iii)
Adding (i), (ii) and (iii), we get:
  (a + b + c) (a + b + c)  =45 + 75 + 105
(a + b + c) (a + b + c) = 225
Taking square root on both sides of above eqn we get:
(a + b + c) = 15
Put the value of (a + b + c) in eqn.s (i), (ii) and (iii), we get:
$$a\times 15 = 45$$
$$b\times 15 = 75$$
$$c\times 15 = 105$$
so,
a = 3, b = 5, c = 7
So, we have
(a^2 + b^2 + c^2) = 3^2 + 5^2 + 7^2
= 9 + 25 + 49
=83.
Create a FREE account and get: