If $$x^2 + kx + k = 0$$ has two distinct real solutions, then the value of k will satisfy:
The correct option is A.
For two distinct real solution, D > 0
$$\implies$$ $$b^{2}-4ac>0$$
$$\implies$$ $$k^{2}-4k>0$$
$$\implies$$ $$k(k-4)>0$$
$$\implies$$ $$k<0$$ or $$k>4$$
Create a FREE account and get: