If ABCD is a trapezium, AC and BDarethe diagonals intersecting each otherat point O.
Then AC : BD is
Given, in trapezium ABCD,Â
$$AB\parallel DC$$
in $$\triangle OAB$$ and $$\triangle OCD$$
$$\angle OAB=\angle OCD$$ (internal alternate angles)
$$\angle OBA=\angle ODC$$Â (internal alternate angles)
$$\angle AOB=\angle COD$$Â (vertically opposite angles)
therefore by AAA similarity, $$\triangle OAB\sim\triangle OCD$$
by using triangle similarity property
$$\frac{OA}{OC}=\frac{OB}{OD}$$Â Â Â Â $$- equation 1$$
by subtracting 1 from both sides, we get
$$\frac{OA}{OC}-1=\frac{OB}{OD}-1$$
$$\frac{OA-OC}{OC}=\frac{OB-OD}{OD}$$
$$\frac{OA-OC}{OB-OD}=\frac{OC}{OD}$$Â Â $$- equation 2$$
by adding 1 to both sides in equation 1, we get
$$\frac{OA}{OC}+1=\frac{OB}{OD}+1$$
$$\frac{OA+OC}{OC}=\frac{OB+OD}{OD}$$
$$\frac{AC}{BD}=\frac{OC}{OD}$$Â Â Â Â $$- equation 3$$
From equations $$2,3$$
$$\frac{AC}{BD}=\frac{OA-OC}{OB-OD}$$
Create a FREE account and get: