If $$\frac{(x - y)}{5} = \frac{(y - z)}{3} = \frac{(z - x)}{2}$$, then which of these is TRUE?
 $$\frac{(x-y)}{5}=\frac{(y-z)}{3}=\frac{(z-x)}{2}$$
$$3(x-y)=5(y-z).$$
or, $$3x-3y=5y-5z$$
or, $$8y=3x+5z..............\left(1\right)$$
Again,Â
$$\frac{y-z}{3}=\frac{z-x}{2}$$
or, $$2y-2z=3z-3x$$
or, $$2y+3x=5z.$$ Put this value in (1)Â
$$8y=2y+3x+3x.$$
or, $$6y=6x.$$
or, $$y=x.$$
So, we can say that ,
$$\frac{x-x}{5}=\frac{z-x}{2}\ \left(Given\ equation\right)$$
or, $$\frac{z-x}{2}=0.$$
or, $$x=z.$$
so, $$x=y=z.$$
B is correct choice.
Create a FREE account and get: