Find the value of $$\cos (A + B)$$, if $$\tan A = \frac{3}{4}$$ and $$\tan B = \frac{5}{12}$$ and $$A$$ and $$B$$ are in quadrant I.
Using this formula ⇒tan(a+b)=$$\frac{tanA+tanB}{1-tanA.tanB}$$
⇒then substitute tana and tanb values
⇒$$\frac{3/4+5/12}{1-3/4×5/12}$$
tan(a+b)=$$\frac{56}{33}$$
To find the cos (a+b)
Use this formula $$\sec^2a$$=1+$$\tan^2a$$
Where in formula replace a by a+b
$$\sec^2(a+b)$$=1+$$\tan^2(a+b)$$
=1+($$\frac{56}{33})^2$$
=$$\frac{4225}{1089}$$
$$\sec^2(a+b)$$= ($$\frac {65}{33})^2$$
Therefore sec(a+b)=$$\frac{65}{33}$$
And we know that The reciprocal of cosine function is secant
Hence cos(a+b)=$$\frac{33}{65}$$
Create a FREE account and get: