If $$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 4\left(\frac{4}{5}\right) - a$$, find the value of '$$a$$'.
$$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 4\left(\frac{4}{5}\right) - a$$
break the right hand part
$$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 4\times 2\left(\frac{2}{5}\right) - a$$
$$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 8\left(\frac{2}{5}\right) - a$$
$$1\left(\frac{2}{9}\right) +a = 8\left(\frac{2}{5}\right) -3\left(\frac{2}{5}\right)$$
$$1\left(\frac{2}{9}\right) +a = 5\left(\frac{2}{5}\right)$$
$$1\left(\frac{2}{9}\right) +a = 2$$
$$a = 2-1\left(\frac{2}{9}\right)$$
 =$$\frac{16}{9}$$
Create a FREE account and get: