Question 64

If $$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 4\left(\frac{4}{5}\right) - a$$, find the value of '$$a$$'.

Solution

$$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 4\left(\frac{4}{5}\right) - a$$

break the right hand part

$$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 4\times 2\left(\frac{2}{5}\right) - a$$

$$3\left(\frac{2}{5}\right) + 1\left(\frac{2}{9}\right) = 8\left(\frac{2}{5}\right) - a$$

$$1\left(\frac{2}{9}\right) +a = 8\left(\frac{2}{5}\right) -3\left(\frac{2}{5}\right)$$

$$1\left(\frac{2}{9}\right) +a = 5\left(\frac{2}{5}\right)$$

$$1\left(\frac{2}{9}\right) +a = 2$$

$$a = 2-1\left(\frac{2}{9}\right)$$

  =$$\frac{16}{9}$$


Create a FREE account and get:

  • Download RRB Study Material PDF
  • 45+ RRB previous papers with solutions PDF
  • 300+ Online RRB Tests for Free

cracku

Boost your Prep!

Download App