If $$\tan A + \tan B = a$$ and $$\cot A + \cot B = b$$, then $$\frac{1}{a} - \frac{1}{b}$$Â is equal to .......
$$\tan A + \tan B = a$$Â ---(1)
$$\cot A + \cot B = b$$ ---(2)
From equation (1), $$\frac{1}{tan A}$$ + $$\frac{1}{tan B}$$ = a
Or $$\frac{cot A + cot B}{cot A cotB}$$ = a
Or $$\frac{B}{cot A cot B}$$=a
Or $$\frac{b}{a}$$= cot A cot B
Now, $$\color{blue}\cot (A + B)$$= $$\color{blue}\frac{cot A cot B - 1 }{cot A + cot B}$$
 $$\cot (A + B)$$ = $$\frac{\frac{b}{a}-1}{b}$$
$$\cot (A + B)$$=$$\frac{b-a}{ab}$$
$$\cot (A + B)$$=$$(\frac{b}{ab})-(\frac{a}{ab})$$Â
$$\cot (A + B)$$= $$\frac{1}{a}$$ - $$\frac{1}{b}$$
Create a FREE account and get: