The volume of a right circular cone, whose radius of the base is half of its altitude, and the volume of a hemisphere are equal. The ratio of the radius of the cone to the radius of the hemisphere is:
Volume of cone(V) =
$$\frac{1}{3} \pi r^2 h$$
Where,  r is the radius of cone
       h is the altitude
radius of the base is half of its altitude
              $$r=\frac{h}{2}$$
              $$h=2r$$
    $$V=\frac{1}{3}\pi r^{2}\times2r$$
              V=$$\frac{2}{3}\pi r^{3}$$
Volume of the hemisphere, U = $$\frac {2}{3} \pi a^{3}$$
Where,a is the radius of hemisphere.
Given V=U
$$\frac {2}{3} \pi r^{3} $$ = $$\frac {2}{3} \pi a^{3} $$
=> $$r^{3} = a^{3}$$
Hence,    r=a
So, $$\frac{r}{a}=1$$
r:a=1 : 1
Create a FREE account and get: