Trigonometry Questions for SSC CHSL Set-2 PDF

0
596
Trigonometry Questions for SSC CHSL Set-2 PDF
Trigonometry Questions for SSC CHSL Set-2 PDF

Trigonometry Questions for SSC CHSL Set-2 PDF

Download SSC CHSL Trigonometry  Questions with answers Set-2  PDF based on previous papers very useful for SSC CHSL Exams. Top-10 Very Important Questions for SSC Exam

Download Trigonometry Questions Set-2 PDF

Get 200 SSC mocks for just Rs. 249. Enroll here

Take a free mock test for SSC CHSL

Download SSC CHSL Previous Papers

More SSC CHSL Important Questions and Answers PDF

Question 1: In ΔABC, ∠C = 90° and AB = c, BC = a, CA = b; then the value of (cosec B – cos A) is

a) c2ab

b) b2ca

c) a2bc

d) bca2

Question 2: If tanθ = 1/√11 0 < θ < π/2, then the value of cosec2θsec2θcosec2θ+sec2θ

a) 34

b) 45

c) 56

d) 67

Question 3: sinθx=cosθy, then sinθcosθ is equal to

a) xy

b) x+y

c) xyx2+y2

d) yxx2+y2

Question 4: If x sin 60°.tan 30° = sec 60°.cot 45°, then the value of x is

a) 2

b) 2√3

c) 4

d) 4√3

Question 5: A sphere and a hemisphere have the same radius. Then the ratio of their respective total surface areas is

a) 2 : 1

b) 1 : 2

c) 4 : 3

d) 3 : 4

SSC CHSL PREVIOUS PAPERS

SSC CHSL Study Material (FREE Tests)

Question 6: If x*sin^3 θ + y *cos^3 θ = sinθ * cosθ ≠ 0 and x sinθ – y cosθ = 0, then value of (x^2 + y^2 ) is

a) 1

b) sinθ – cosθ

c) sinθ + cosθ

d) 0

Question 7: If 2 – cos^2 θ = 3 sin θ cos θ, sin θ ≠ cos θ then tan θ is

a) 1/2

b) 0

c) 2/3

d) 1/3

Question 8: If tanθ=ab, then asinθ+bcosθasinθbcosθ is

a) aa2+b2

b) ba2+b2

c) a2b2a2+b2

d) a2+b2a2b2

Question 9: If sinθ+cosθ=2sin(90θ), then cot θ is equal to

a) 2+1

b) 12+2

c) 201

d) None of these

Question 10: What is the value of cosec 11π/6?

a) -2/√3

b) √2

c) -2

d) -√2

SSC CHSL FREE MOCK TEST

FREE SSC STUDY MATERIAL

Answers & Solutions:

1) Answer (C)

In ABC,AB2=AC2+BC2

=> c2=a2+b2=>c2b2=a2

cosecB=ABBC=cb

cosA=ACAB=bc

cosecBcosA=cbbc

= c2b2bc=a2bc

2) Answer (C)

Expression : tanθ=111

We know that, secθ=1+tan2θ

=> secθ=1+111=1211

Now, cosecθ=secθtanθ

=> cosecθ=12

To find : cosec2θsec2θcosec2θ+sec2θ

= 12121112+1211

= 11111+111

= 1012=56

3) Answer (C)

sinθx=cosθy

Reaaranging the given data , we get

tanθ = xy

Now taking cosθ common from sinθcosθ,we get

= cosθ(tanθ)1…………(1)

Imagine a right angle triangle

From this triangle , we can calculate values of cosθ and tanθ and hence putting the values in equation 1

we get = y(x2+y2) (xy- 1)

= xyx2+y2

4) Answer (C)

sin 60° = (3)2

tan 30 = 1(3)

sec 60 = 2

cot 45 = 1

x (3)2 1(3) = (2×1)

x = 4

5) Answer (C)

Let the common radius be “r” units

area of sphere = 4πr2

area of hemi-sphere = 2πr2 + πr2 = 3πr2

Area of SphereArea of Hemisphere = 4πr23πr2

= 43

6) Answer (A)

Given, xsinθ -ycosθ = 0
y=xsinθcosθ

⇒y=xsinθcosθ

Given the expression:
xsin3θ + ycos3θ = sinθcosθ
Replacing the value of y we get,
xsin3θ+(xsinθ/cosθ)×cos3θ=sinθcosθ
x sin3θ + x sinθcos2θ = sinθcosθ
x sinθ × (sin2θ + cos2θ) = sinθcosθ
We know the identity: sin2θ + cos2θ = 1
x = cosθ
y=xsinθ/cosθ
y = sinθ
Hence,
x2 + y2 = cos2θ + sin2θ
= 1
Option A is the correct answer.

7) Answer (A)

2cos2θ=1+1cos2θ=1+sin2θ
Dividing the LHS and RHS by cos2θ
1+sin2θ=sec2θ+tan2θ
3sinθcosθ=3tanθ
sec2θ+tan2θ=3tanθ
sec2θ=1+tan2θ
1+tan2θ+tan2θ=3tanθ
1+2tan2θ=3tanθ
2tan2θ3tanθ+1=0
let x=tanθ
The equation becomes
2x2+3x+1=0
On solving for x we get x=1 and x=12
Option A is the correct answer.

8) Answer (D)

To find : asinθ+bcosθasinθbcosθ

Dividing numerator and denominator by cosθ, we get :

= atanθ+batanθb

Also, it is given that tanθ=ab

= a×ab+ba×abb

= a2+b2ba2b2b

= a2+b2a2b2

9) Answer (A)

Expression : sinθ+cosθ=2sin(90θ)

=> sinθ+cosθ=2cosθ

=> sinθ=cosθ(21)

=> cosθsinθ=121

=> cotθ=121×2+12+1

=> cotθ=2+1

10) Answer (C)

Expression : cosec 11π/6

= cosec(2ππ6)

= cosec(π6)=2

=> Ans – (C)

DOWNLOAD APP TO ACESSES DIRECTLY ON MOBILE

SSC CHSL Important Q&A PDF

We hope this Trigonometry Questions for SSC CHSL Exam preparation is so helpful to you.

LEAVE A REPLY

Please enter your comment!
Please enter your name here