Surds & Indices Questions for RRB NTPC PDF

0
1840
Surds & Indices Questions for RRB NTPC PDF
Surds & Indices Questions for RRB NTPC PDF

Surds & Indices Questions for RRB NTPC PDF

Download RRB NTPC Surds & Indices Questions PDF. Top 10 RRB NTPC questions based on asked questions in previous exam papers very important for the Railway NTPC exam.

Download Surds & Indices Questions for RRB NTPC PDF

Take a free mock test for RRB NTPC

Download RRB NTPC Previous Papers PDF

Question 1: The two numbers $4^{30}$ and $25^{30}$ are written next to each other. What is the total number of digits written down?

a) 30

b) 59

c) 60

d) None of these

Question 2: If $x = 9 + 4\sqrt{5}$, what is $x + \frac{1}{x}$

a) 17.83

b) 18.45

c) 18.00

d) None of these

Question 3: What is the value of x for which $x^{2/3}$ + $3x^{1/3} – 4<0$?

a) -64 < x < 1

b) -1 < x < 64

c) -64 < x < 64

d) 1 < x < 64

RRB NTPC Previous Papers [Download PDF]

FREE RRB NTPC YOUTUBE VIDEOS

Question 4: $ \frac{1}{{3-2}\sqrt{2}}$ – $ \frac{1}{{3+2}\sqrt{2}}$ = $2^x$. Find x?

a) 3/2

b) 5/2

c) 3

d) 7/2

Question 5: Which of the following surds is the greatest?

a) $ 4-\sqrt{7}$

b) $ 5-\sqrt{10}$

c) $ 8-\sqrt{15}$

d) Cannot be determined

Question 6: If $ x=\sqrt{17}-\sqrt{13}$, what is $ \frac{30-\sqrt{884}}{\sqrt{17}+\sqrt{13}}$?

a) $\frac{x^2}{x-1}$

b) $\frac{x^3}{x-1}$

c) $x^3$

d) $\frac{x^3}{4}$

RRB NTPC Free Mock Test

Question 7: If $\sqrt{28+5\sqrt{12}} = a+\sqrt{b}$, where a and b are positive rational numbers. Find a+b?

a) 2

b) 8

c) 13/2

d) Cannot be determined

Question 8: Which of the following surds is the greatest?

a) $\sqrt{1}+\sqrt{21}$

b) $\sqrt{2}+\sqrt{20}$

c) $\sqrt{4}+\sqrt{18}$

d) All of them are equal

Question 9: Simplify: $\sqrt{19+4\sqrt{21}}$

a) $2+\sqrt{26} $

b) $3-\sqrt{15} $

c) $\sqrt{5}+\sqrt{26} $

d) $\sqrt{12}+\sqrt{7}$

Question 10: Which of the following surds is the greatest?

a) $\sqrt{2}+\sqrt{14}$

b) $\sqrt{3}+\sqrt{13}$

c) $\sqrt{5}+\sqrt{11}$

d) $\sqrt{7}+\sqrt{8}$

Download General Science Notes PDF

Answers & Solutions:

1) Answer (D)

Let $\log_{10}{2}$ be x.
So, the number of digits in $4^{30}$ is [60x] + 1.
So, $\log_{10}{5}$ is 1-x and the number of digits of $25^{30}$ is [60-60x]+1.
Total number of digits is 2+[60x]+[60-60x] which is 62 + [60x]+[-60x].
As 60x is not an integer, the value of [60x]+[-60x] = -1. So, value is 61

2) Answer (C)

$x = 9 + 4\sqrt{5}$. So, $\frac{1}{x}$ = $9 – 4\sqrt{5}$. So, $x+ \frac{1}{x}$ = 18

3) Answer (A)

-4 < $x^{1/3}$ < 1 or -64 < x < 1

4) Answer (B)

$\frac{1}{3-2\sqrt{2}}-\frac{1}{3+2\sqrt{2}} = \frac{3+2\sqrt{2}-3+2\sqrt{2}}{3^2-(2\sqrt{2})^2} = 4\sqrt{2}/1 = 2^{5/2}$. Hence x=5/2.

5) Answer (C)

The value of $\sqrt{7}$ is between 2 and 3. Hence, $4-\sqrt{7}$ is between 1 and 2. Similarly, the value of b is between 1 and 2 and c is between 4 and 5. Hence, c) is the greatest.

6) Answer (D)

$\frac{30-\sqrt{884}}{\sqrt{17}+\sqrt{13}} = \frac{(\sqrt{17}-\sqrt{13})^2}{\sqrt{17}+\sqrt{13}} = \frac{(\sqrt{17}-\sqrt{13})^3}{(\sqrt{17}+\sqrt{13})(\sqrt{17}-\sqrt{13})}=\frac{x^3}{17-13} = \frac{x^3}{4}$.

7) Answer (B)

$\sqrt{28+5\sqrt{12}} = a+\sqrt{b} \rightarrow 28+5\sqrt{12} = a^2+b+2a\sqrt{b}$.

Hence $a^2+b=28$ and $4 a^2 b =300$.

Hence $a^2=25$ and b=3. As a is positive, a=5.

Hence a+b=8.

8) Answer (C)

$(\sqrt{a}+\sqrt{b})^2 = a+b+2\sqrt{ab}$.
As a+b is equal for all three of them we need to compare which has the highest value for $\sqrt{ab}$. So the term with highest value of ab will be the greatest.
ab values for the three options are 21, 40 and 72.
Hence c) is the greatest.

9) Answer (D)

Let $\sqrt{19+4\sqrt{21}} = \sqrt{a}+\sqrt{b}$
$\rightarrow a+b+2\sqrt{ab} = 19+4\sqrt{21}$.
Hence, a+b=19 and ab=84. Hence a=12, b=7.

10) Answer (C)

On squaring the four options we get $16+2\sqrt{28}, 16+2\sqrt{39}, 16+2\sqrt{55}, 15+2\sqrt{56}$.

Out of a-c options, c is clearly the greatest.

Similarly b is also rejected.

Now between c and d, let d>c

$15+2\sqrt{56}>16+2\sqrt{55}$
$2[\sqrt{56}-\sqrt{55}]>1$

Multiply both sides of the equation by $[\sqrt{56}+\sqrt{55}]$

$2[\sqrt{56}-\sqrt{55}][\sqrt{56}+\sqrt{55}]>[\sqrt{56}+\sqrt{55}]$

2>$[\sqrt{56}+\sqrt{55}]$

which is false as the value of each term of RHS lies between 7 and 8.

This contradicts our assumption that d>c

Hence c>d.

DOWNLOAD APP FOR RRB FREE MOCKS

We hope this Surds & Indices Questions pdf  for RRB NTPC Exam will be highly useful for your Preparation.

LEAVE A REPLY

Please enter your comment!
Please enter your name here