

Surds & Indices Questions for RRB NTPC PDF

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature without the permission of cracku.in, application for which shall be made to support@cracku.in

Instructions

For the following questions answer them individually

Question 1

The two numbers 4^{30} and 25^{30} are written next to each other. What is the total number of digits written down?

- **A** 30
- **B** 59
- **C** 60
- D None of these

Answer: D

Explanation:

Let $log_{10} 2$ be x.

So, the number of digits in 4^{30} is [60x] + 1.

So, $\log_{10} 5$ is 1-x and the number of digits of 25^{30} is [60-60x]+1. Total number of digits is 2+[60x]+[60-60x] which is 62 + [60x]+[-60x].

As 60x is not an integer, the value of [60x]+[-60x] = -1. So, value is 61

Question 2

If $x = 9 + 4\sqrt{5}$, what is $x + \frac{1}{x}$

- **A** 17.83
- **B** 18.45
- **C** 18.00
- **D** None of these

Answer: C

Explanation:

$$x = 9 + 4\sqrt{5}$$
. So, $x = 9 - 4\sqrt{5}$. So, $x + x = 18$

Question 3

What is the value of x for which $x^{2/3} + 3x^{1/3} - 4 < 0$?

- **A** -64 < x < 1
- **B** -1 < x < 64
- **C** -64 < x < 64
- **D** 1 < x < 64

Answer: A

Explanation:

 $-4 < x^{1/3} < 1 \text{ or } -64 < x < 1$

Question 4

- **A** 3/2
- **B** 5/2
- **C** 3
- **D** 7/2
 - Answer: B

Explanation:

Question 5

Which of the following surds is the greatest?

- A $4-\sqrt{7}$
- **B** $5 \sqrt{10}$
- **c** $8 \sqrt{15}$
- Cannot be determined

Answer: C

Explanation:

The value of $\sqrt{7}$ is between 2 and 3. Hence, $4-\sqrt{7}$ is between 1 and 2. Similarly, the value of b is between 1 and 2 and c is between 4 and 5. Hence, c) is the greatest.

Question 6

If
$$x=\sqrt{17}-\sqrt{13}$$
, what is $\sqrt[30-\sqrt{884}]{77}+\sqrt{13}$?

- A x^2
- $\mathbf{B} \quad \begin{array}{c} x^3 \\ x-1 \end{array}$
- \mathbf{C} x
- $\mathbf{D} \quad \begin{array}{c} x^3 \\ 4 \end{array}$

Answer: D

Explanation:

RRB NTPC Free Mock Tests

Question 7

If $\sqrt{28+5\sqrt{12}}=a+\sqrt{b}$, where a and b are positive rational numbers. Find a+b?

Cannot be determined

Answer: B

Explanation:

$$\sqrt{28 + 5\sqrt{12}} = a + \sqrt{b} \rightarrow 28 + 5\sqrt{12} = a^2 + b + 2a\sqrt{b}.$$

Hence $a^2 + b = 28$ and $4a^2b = 300$.

Hence $a^2=25$ and b=3. As a is positive, a=5.

Hence a+b=8.

Question 8

Which of the following surds is the greatest?

B
$$\sqrt{2} + \sqrt{20}$$

c
$$\sqrt{4} + \sqrt{18}$$

All of them are equal

Answer: C

Explanation:

 $(\sqrt{a} + \sqrt{b})^2 = a + b + 2\sqrt{ab}$. As a+b is equal for all three of them we need to compare which has the highest value for \sqrt{ab} . So the term with highest value of ab will be the greatest. ab values for the three options are 21, 40 and 72. Hence c) is the greatest.

Question 9

Simplify:
$$\sqrt{19+4\sqrt{21}}$$

A
$$2 + \sqrt{26}$$

B
$$3 - \sqrt{15}$$

c
$$\sqrt{5} + \sqrt{26}$$

D
$$\sqrt{12} + \sqrt{7}$$

Answer: D

Explanation:

Let
$$\sqrt{19+4\sqrt{21}} = \sqrt{a} + \sqrt{b} \rightarrow a + b + 2\sqrt{ab} = 19 + 4\sqrt{21}$$
. Hence, a+b=19 and ab=84. Hence a=12, b=7.

20 RRB NTPC Mocks-Tests Rs.149

Question 10

Which of the following surds is the greatest?

- **A** $\sqrt{2} + \sqrt{14}$
- $\mathbf{B} \quad \sqrt{3} + \sqrt{13}$
- **c** $\sqrt{5} + \sqrt{11}$
- **D** $\sqrt{7} + \sqrt{8}$

Answer: C

Explanation:

On squaring the four options we get $16+2\sqrt{28}, 16+2\sqrt{39}, 16+2\sqrt{55}, 15+2\sqrt{56}$

Out of a-c options, c is clearly the greatest.

Similarly b is also rejected.

Now between c and d, let d>c

$$\begin{array}{l} 15 + 2\sqrt{56} > 16 + 2\sqrt{55} \\ 2[\sqrt{56} - \sqrt{55}] > 1 \end{array}$$

Multiply both sides of the equation by $\sqrt{56} + \sqrt{55}$

$$2[\sqrt{56} - \sqrt{55}][\sqrt{56} + \sqrt{55}] > [\sqrt{56} + \sqrt{55}]$$

$$2 > [\sqrt{56} + \sqrt{55}]$$

which is false as the value of each term of RHS lies between 7 and 8.

This contradicts our assumption that d>c

Hence c>d.

RRB NTPC Previous Papers (Download PDF)

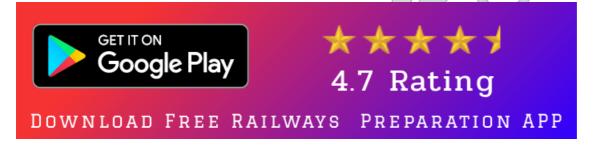
RRB NTPC Free Mock Tests

20 RRB NTPC Mocks-Tests Rs.149

Daily Free RRB Online Tesrt

RRB Group-D Previous Papers

RRB Free Videos (You Tube Channel)


RRB General Science Notes (Download Pdf)

RRB GK Material (Download Pdf)

RRB Group-D Free Mock TestsRRB Group-D Free Mock Tests

20 RRB Group-D Mocks - Just Rs. 149

790+ Mocks - Just Rs. 194. Enroll To Cracku Pass

